Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL 60637, USA.
Proteins. 2011;79 Suppl 10(Suppl 10):161-71. doi: 10.1002/prot.23175. Epub 2011 Oct 11.
This work presents RaptorX, a statistical method for template-based protein modeling that improves alignment accuracy by exploiting structural information in a single or multiple templates. RaptorX consists of three major components: single-template threading, alignment quality prediction, and multiple-template threading. This work summarizes the methods used by RaptorX and presents its CASP9 result analysis, aiming to identify major bottlenecks with RaptorX and template-based modeling and hopefully directions for further study. Our results show that template structural information helps a lot with both single-template and multiple-template protein threading especially when closely-related templates are unavailable, and there is still large room for improvement in both alignment and template selection. The RaptorX web server is available at http://raptorx.uchicago.edu.
这项工作提出了 RaptorX,这是一种基于模板的蛋白质建模的统计方法,通过利用单个或多个模板中的结构信息来提高对齐精度。 RaptorX 由三个主要部分组成:单模板线程、对齐质量预测和多模板线程。 这项工作总结了 RaptorX 使用的方法,并展示了它在 CASP9 中的结果分析,旨在确定 RaptorX 和基于模板的建模的主要瓶颈,并希望为进一步的研究指明方向。 我们的结果表明,模板结构信息对单模板和多模板蛋白质线程都有很大的帮助,特别是在没有密切相关的模板时,在对齐和模板选择方面仍有很大的改进空间。 RaptorX 网络服务器可在 http://raptorx.uchicago.edu 上获得。