Weihs Daphne, Mason Thomas G, Teitell Michael A
Department of Pathology and Laboratory Medicine, Institute for Stem Cell Biology and Medicine, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
Biophys J. 2006 Dec 1;91(11):4296-305. doi: 10.1529/biophysj.106.081109. Epub 2006 Sep 8.
Cells continuously adapt to changing conditions through coordinated molecular and mechanical responses. This adaptation requires the transport of molecules and signaling through intracellular regions with differing material properties, such as variations in viscosity or elasticity. To determine the impact of regional variations on cell structure and physiology, an approach, termed bio-microrheology, or the study of deformation and flow of biological materials at small length scales has emerged. By tracking the thermal and driven motion of probe particles, organelles, or molecules, the local physical environment in distinct subcellular regions can be explored. On the surface or inside cells, tracking the motion of particles can reveal the rheological properties that influence cell features, such as shape and metastatic potential. Cellular microrheology promises to improve our concepts of regional and integrated properties, structures, and transport in live cells. Since bio-microrheology is an evolving methodology, many specific details, such as how to interpret complex combinations of thermally mediated and directed probe transport, remain to be fully explained. This work reviews the current state of the field and discusses the utility and challenges of this emerging approach.
细胞通过协调分子和机械反应不断适应变化的环境。这种适应需要分子的运输以及通过具有不同材料特性(如粘度或弹性变化)的细胞内区域进行信号传导。为了确定区域变化对细胞结构和生理学的影响,一种称为生物微流变学的方法出现了,即研究小尺度下生物材料的变形和流动。通过跟踪探针颗粒、细胞器或分子的热运动和驱动运动,可以探索不同亚细胞区域的局部物理环境。在细胞表面或内部,跟踪颗粒的运动可以揭示影响细胞特征(如形状和转移潜能)的流变特性。细胞微流变学有望改善我们对活细胞中区域和综合特性、结构及运输的认识。由于生物微流变学是一种不断发展的方法,许多具体细节,如如何解释热介导和定向探针运输的复杂组合,仍有待充分阐明。这项工作回顾了该领域的现状,并讨论了这种新兴方法的实用性和挑战。