Suppr超能文献

生物微流变学:微流变学的一个前沿领域。

Bio-microrheology: a frontier in microrheology.

作者信息

Weihs Daphne, Mason Thomas G, Teitell Michael A

机构信息

Department of Pathology and Laboratory Medicine, Institute for Stem Cell Biology and Medicine, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.

出版信息

Biophys J. 2006 Dec 1;91(11):4296-305. doi: 10.1529/biophysj.106.081109. Epub 2006 Sep 8.

Abstract

Cells continuously adapt to changing conditions through coordinated molecular and mechanical responses. This adaptation requires the transport of molecules and signaling through intracellular regions with differing material properties, such as variations in viscosity or elasticity. To determine the impact of regional variations on cell structure and physiology, an approach, termed bio-microrheology, or the study of deformation and flow of biological materials at small length scales has emerged. By tracking the thermal and driven motion of probe particles, organelles, or molecules, the local physical environment in distinct subcellular regions can be explored. On the surface or inside cells, tracking the motion of particles can reveal the rheological properties that influence cell features, such as shape and metastatic potential. Cellular microrheology promises to improve our concepts of regional and integrated properties, structures, and transport in live cells. Since bio-microrheology is an evolving methodology, many specific details, such as how to interpret complex combinations of thermally mediated and directed probe transport, remain to be fully explained. This work reviews the current state of the field and discusses the utility and challenges of this emerging approach.

摘要

细胞通过协调分子和机械反应不断适应变化的环境。这种适应需要分子的运输以及通过具有不同材料特性(如粘度或弹性变化)的细胞内区域进行信号传导。为了确定区域变化对细胞结构和生理学的影响,一种称为生物微流变学的方法出现了,即研究小尺度下生物材料的变形和流动。通过跟踪探针颗粒、细胞器或分子的热运动和驱动运动,可以探索不同亚细胞区域的局部物理环境。在细胞表面或内部,跟踪颗粒的运动可以揭示影响细胞特征(如形状和转移潜能)的流变特性。细胞微流变学有望改善我们对活细胞中区域和综合特性、结构及运输的认识。由于生物微流变学是一种不断发展的方法,许多具体细节,如如何解释热介导和定向探针运输的复杂组合,仍有待充分阐明。这项工作回顾了该领域的现状,并讨论了这种新兴方法的实用性和挑战。

相似文献

1
Bio-microrheology: a frontier in microrheology.
Biophys J. 2006 Dec 1;91(11):4296-305. doi: 10.1529/biophysj.106.081109. Epub 2006 Sep 8.
2
Nonlinear microrheology: bulk stresses versus direct interactions.
Langmuir. 2008 Feb 19;24(4):1147-59. doi: 10.1021/la7023692. Epub 2007 Dec 22.
3
Multiple-Particle-Tracking to investigate viscoelastic properties in living cells.
Methods. 2010 May;51(1):20-6. doi: 10.1016/j.ymeth.2009.12.008. Epub 2009 Dec 24.
4
Intracellular microrheology of motile Amoeba proteus.
Biophys J. 2008 Apr 15;94(8):3313-22. doi: 10.1529/biophysj.107.123851. Epub 2008 Jan 11.
5
Microrheology of DNA hydrogels.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8137-8142. doi: 10.1073/pnas.1722206115. Epub 2018 Jul 25.
6
Rheological microscopy: local mechanical properties from microrheology.
Phys Rev Lett. 2003 Mar 14;90(10):108301. doi: 10.1103/PhysRevLett.90.108301.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum.
Ann Biomed Eng. 2013 Apr;41(4):837-46. doi: 10.1007/s10439-012-0721-2. Epub 2012 Dec 28.
10
Micromechanical mapping of live cells by multiple-particle-tracking microrheology.
Biophys J. 2002 Dec;83(6):3162-76. doi: 10.1016/S0006-3495(02)75319-8.

引用本文的文献

1
Microrheology: From Video Microscopy to Optical Tweezers.
Micromachines (Basel). 2025 Aug 8;16(8):918. doi: 10.3390/mi16080918.
2
Thermodynamic uncertainty relation for systems with active Ornstein-Uhlenbeck particles.
PNAS Nexus. 2025 May 22;4(6):pgaf160. doi: 10.1093/pnasnexus/pgaf160. eCollection 2025 Jun.
3
Subcellular Mechanical Imaging of Erythrocytes with Optically Correlated Scanning Ion Conductance Microscopy.
ACS Meas Sci Au. 2025 Apr 2;5(3):345-352. doi: 10.1021/acsmeasuresciau.5c00019. eCollection 2025 Jun 18.
4
Anisotropy, topography and non-newtonian properties of cellular interiors probed by helical magnetic nanobots.
J Microbio Robot. 2025;21(1):6. doi: 10.1007/s12213-024-00176-x. Epub 2025 Mar 7.
5
Giant KASH proteins and ribosomes synergistically establish cytoplasmic biophysical properties .
bioRxiv. 2025 Jan 12:2025.01.10.632479. doi: 10.1101/2025.01.10.632479.
7
Imaging-based quantitative assessment of biomolecular condensates in vitro and in cells.
J Biol Chem. 2025 Feb;301(2):108130. doi: 10.1016/j.jbc.2024.108130. Epub 2024 Dec 24.
8
Diffusion Wave Spectroscopy Microrheological Characterization of Gelling Agarose Solutions.
Polymers (Basel). 2024 Sep 16;16(18):2618. doi: 10.3390/polym16182618.
9
Mind the gap: Exploring extracellular spaces in the brain with particle tracking and AI.
Biophys J. 2024 Nov 19;123(22):3857-3858. doi: 10.1016/j.bpj.2024.09.023. Epub 2024 Sep 26.
10
Small molecular weight epigenetic inhibitors modulate the extracellular matrix during pancreatic acinar ductal metaplasia.
Biochem Biophys Res Commun. 2024 Dec 3;736:150496. doi: 10.1016/j.bbrc.2024.150496. Epub 2024 Aug 3.

本文引用的文献

1
Advances in the microrheology of complex fluids.
Rep Prog Phys. 2016 Jul;79(7):074601. doi: 10.1088/0034-4885/79/7/074601. Epub 2016 Jun 1.
2
Microrheology of polymeric solutions using x-ray photon correlation spectroscopy.
J Phys Condens Matter. 2005 Jun 29;17(25):L279-85. doi: 10.1088/0953-8984/17/25/L06. Epub 2005 Jun 10.
3
Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy.
Appl Opt. 1991 Apr 1;30(10):1185-95. doi: 10.1364/AO.30.001185.
4
Observation of a single-beam gradient force optical trap for dielectric particles.
Opt Lett. 1986 May 1;11(5):288. doi: 10.1364/ol.11.000288.
5
Linearity and time-scale invariance of the creep function in living cells.
J R Soc Interface. 2004 Nov 22;1(1):91-7. doi: 10.1098/rsif.2004.0010.
6
Stress-dependent elasticity of composite actin networks as a model for cell behavior.
Phys Rev Lett. 2006 Mar 3;96(8):088102. doi: 10.1103/PhysRevLett.96.088102.
7
Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jun;67(6 Pt 1):061908. doi: 10.1103/PhysRevE.67.061908. Epub 2003 Jun 23.
8
How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response.
Biochem Biophys Res Commun. 2005 Aug 19;334(1):183-92. doi: 10.1016/j.bbrc.2005.05.205.
9
Cytoskeletal remodelling and slow dynamics in the living cell.
Nat Mater. 2005 Jul;4(7):557-61. doi: 10.1038/nmat1404. Epub 2005 Jun 5.
10
Creep function of a single living cell.
Biophys J. 2005 Mar;88(3):2224-33. doi: 10.1529/biophysj.104.050278. Epub 2004 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验