Ding Xiangyi, Hao Hongyan, Elnatan Daniel, Alinaya Patrick Neo, Kalra Shilpi, Kaur Abby, Kumari Sweta, Holt Liam J, Luxton G W Gant, Starr Daniel A
Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA.
Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine; New Yor, NY, USA.
bioRxiv. 2025 Jan 12:2025.01.10.632479. doi: 10.1101/2025.01.10.632479.
Understanding how cells control their biophysical properties during development remains a fundamental challenge. While cytoplasmic macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for rheology, we discovered that tissues maintain distinct cytoplasmic biophysical properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells. We identified two conserved mechanisms controlling cytoplasmic macromolecular diffusion: ribosome concentration, a known regulator of cytoplasmic crowding, works in concert with a previously unknown function for the giant KASH protein ANC-1 scaffolding the endoplasmic reticulum. These findings reveal mechanisms by which tissues establish and maintain distinct cytoplasmic biophysical properties, with implications for understanding cellular organization across species.
了解细胞在发育过程中如何控制其生物物理特性仍然是一项根本性挑战。虽然细胞质大分子拥挤会影响单细胞中的多个细胞过程,但对其在活体动物中的调节仍知之甚少。利用基因编码的多聚体纳米颗粒进行流变学研究,我们发现组织维持着与在包括细菌、酵母物种和培养的哺乳动物细胞在内的多种系统中观察到的不同的独特细胞质生物物理特性。我们确定了两种控制细胞质大分子扩散的保守机制:核糖体浓度(一种已知的细胞质拥挤调节因子)与巨大的KASH蛋白ANC-1(其具有内质网支架的此前未知功能)协同发挥作用。这些发现揭示了组织建立和维持独特细胞质生物物理特性的机制,对理解跨物种的细胞组织具有重要意义。