Fernandez Andrea Jannina, Gibson Graham M, Rył Anna, Tassieri Manlio
Division of Biomedical Engineering, James Watt School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK.
School of Physics and Astronomy, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK.
Micromachines (Basel). 2025 Aug 8;16(8):918. doi: 10.3390/mi16080918.
Microrheology, a branch of rheology, focuses on studying the flow and deformation of matter at micron length scales, enabling the characterization of materials using minute sample volumes. This review article explores the principles and advancements of microrheology, covering a range of techniques that infer the viscoelastic properties of soft materials from the motion of embedded tracer particles. Special emphasis is placed on methods employing optical tweezers, which have emerged as a powerful tool in both passive and active microrheology thanks to their exceptional force sensitivity and spatiotemporal resolution. The review also highlights complementary techniques such as video particle tracking, magnetic tweezers, dynamic light scattering, and atomic force microscopy. Applications across biology, materials science, and soft matter research are discussed, emphasizing the growing relevance of particle tracking microrheology and optical tweezers in probing microscale mechanics.
微观流变学是流变学的一个分支,专注于研究微米长度尺度下物质的流动和变形,能够使用微量样品对材料进行表征。这篇综述文章探讨了微观流变学的原理和进展,涵盖了一系列从嵌入示踪粒子的运动推断软材料粘弹性特性的技术。特别强调了采用光镊的方法,由于其出色的力灵敏度和时空分辨率,光镊已成为被动和主动微观流变学中的强大工具。该综述还突出了视频粒子跟踪、磁镊、动态光散射和原子力显微镜等互补技术。讨论了在生物学、材料科学和软物质研究中的应用,强调了粒子跟踪微观流变学和光镊在探测微观尺度力学方面日益增长的相关性。