Suppr超能文献

核糖体相关的大肠杆菌EngA的GTPase活性和细胞功能中两个G结构域的协同和关键作用。

Cooperative and critical roles for both G domains in the GTPase activity and cellular function of ribosome-associated Escherichia coli EngA.

作者信息

Bharat Amrita, Jiang Mengxi, Sullivan Susan M, Maddock Janine R, Brown Eric D

机构信息

Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.

出版信息

J Bacteriol. 2006 Nov;188(22):7992-6. doi: 10.1128/JB.00959-06. Epub 2006 Sep 8.

Abstract

To probe the cellular phenotype and biochemical function associated with the G domains of Escherichia coli EngA (YfgK, Der), mutations were created in the phosphate binding loop of each. Neither an S16A nor an S217A variant of G domain 1 or 2, respectively, was able to support growth of an engA conditional null. Polysome profiles of EngA-depleted cells were significantly altered, and His(6)-EngA was found to cofractionate with the 50S ribosomal subunit. The variants were unable to complement the abnormal polysome profile and were furthermore significantly impacted with respect to in vitro GTPase activity. Together, these observations suggest that the G domains have a cooperative function in ribosome stability and/or biogenesis.

摘要

为探究与大肠杆菌EngA(YfgK,Der)的G结构域相关的细胞表型和生化功能,在每个结构域的磷酸结合环中引入了突变。G结构域1或2的S16A变体和S217A变体分别均无法支持engA条件性缺失菌株的生长。EngA缺失细胞的多核糖体图谱发生了显著改变,并且发现His(6)-EngA与50S核糖体亚基共分离。这些变体无法弥补异常的多核糖体图谱,并且其体外GTPase活性也受到显著影响。这些观察结果共同表明,G结构域在核糖体稳定性和/或生物发生中具有协同功能。

相似文献

2
The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli.
Mol Microbiol. 2006 Sep;61(6):1660-72. doi: 10.1111/j.1365-2958.2006.05348.x. Epub 2006 Aug 23.
3
Era and RbfA have overlapping function in ribosome biogenesis in Escherichia coli.
J Mol Microbiol Biotechnol. 2006;11(1-2):41-52. doi: 10.1159/000092818.
5
Disrupting domain-domain interactions is indispensable for EngA-ribosome interactions.
Biochim Biophys Acta Proteins Proteom. 2017 Mar;1865(3):289-303. doi: 10.1016/j.bbapap.2016.12.005. Epub 2016 Dec 13.
6
Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding.
Nucleic Acids Res. 2009 Apr;37(7):2359-70. doi: 10.1093/nar/gkp107. Epub 2009 Feb 26.
7
Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly.
Nucleic Acids Res. 2014 Dec 1;42(21):13430-9. doi: 10.1093/nar/gku1135. Epub 2014 Nov 11.
10
Functional characterization of EngA(MS), a P-loop GTPase of Mycobacterium smegmatis.
PLoS One. 2012;7(4):e34571. doi: 10.1371/journal.pone.0034571. Epub 2012 Apr 10.

引用本文的文献

1
Characterizing a novel CMK-EngA fusion protein from : Implications for inter-domain regulation.
Biochem Biophys Rep. 2022 Dec 16;33:101410. doi: 10.1016/j.bbrep.2022.101410. eCollection 2023 Mar.
2
Competitive advantage of oxygen-tolerant bioanodes of in bioelectrochemical systems.
Biofilm. 2021 Jun 14;3:100052. doi: 10.1016/j.bioflm.2021.100052. eCollection 2021 Dec.
3
The Photosystem II Repair Cycle Requires FtsH Turnover through the EngA GTPase.
Plant Physiol. 2018 Oct;178(2):596-611. doi: 10.1104/pp.18.00652. Epub 2018 Aug 21.
5
Heterologous Expression of Der Homologs in an Escherichia coli der Mutant and Their Functional Complementation.
J Bacteriol. 2016 Aug 11;198(17):2284-96. doi: 10.1128/JB.00384-16. Print 2016 Sep 1.
6
The large ribosomal subunit protein L9 enables the growth of EF-P deficient cells and enhances small subunit maturation.
PLoS One. 2015 Apr 16;10(4):e0120060. doi: 10.1371/journal.pone.0120060. eCollection 2015.
7
Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles.
Front Plant Sci. 2014 Dec 11;5:678. doi: 10.3389/fpls.2014.00678. eCollection 2014.
8
Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly.
Nucleic Acids Res. 2014 Dec 1;42(21):13430-9. doi: 10.1093/nar/gku1135. Epub 2014 Nov 11.
9
Discovery of a small molecule that inhibits bacterial ribosome biogenesis.
Elife. 2014 Sep 18;3:e03574. doi: 10.7554/eLife.03574.
10

本文引用的文献

1
The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly.
J Bacteriol. 2006 Oct;188(19):6757-70. doi: 10.1128/JB.00444-06.
2
The essential GTPase YphC displays a major domain rearrangement associated with nucleotide binding.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12359-64. doi: 10.1073/pnas.0602585103. Epub 2006 Aug 7.
3
The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit.
J Bacteriol. 2006 Feb;188(3):1205-10. doi: 10.1128/JB.188.3.1205-1210.2006.
4
The essential GTPase RbgA (YlqF) is required for 50S ribosome assembly in Bacillus subtilis.
Mol Microbiol. 2006 Jan;59(2):528-40. doi: 10.1111/j.1365-2958.2005.04948.x.
6
The GTP binding protein Obg homolog ObgE is involved in ribosome maturation.
Genes Cells. 2005 May;10(5):393-408. doi: 10.1111/j.1365-2443.2005.00851.x.
7
Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function.
Biochem J. 2005 Aug 1;389(Pt 3):843-52. doi: 10.1042/BJ20041873.
8
10
The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit.
J Bacteriol. 2004 Jan;186(2):481-9. doi: 10.1128/JB.186.2.481-489.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验