Suppr超能文献

真核生物莽草酸途径的进化起源:基因融合、水平基因转移和内共生替代

Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.

作者信息

Richards Thomas A, Dacks Joel B, Campbell Samantha A, Blanchard Jeffrey L, Foster Peter G, McLeod Rima, Roberts Craig W

机构信息

Deparment of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.

出版信息

Eukaryot Cell. 2006 Sep;5(9):1517-31. doi: 10.1128/EC.00106-06.

Abstract

Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.

摘要

目前,莽草酸途径被报道为原核生物、子囊菌、顶复门寄生虫和植物的一种代谢特征。植物的莽草酸途径酶与原核生物的同源物相似,并且主要在叶绿体中发挥作用,这表明其起源于质体祖先基因组。同样拥有源自藻类的质体细胞器的弓形虫,编码了一条与子囊菌基因相似的莽草酸途径,包括一种五酶五功能芳香族氨基酸合成酶(arom)。这些数据表明,莽草酸途径和五功能芳香族氨基酸合成酶要么在真核生物中有着古老的起源,要么是通过真核生物到真核生物的水平基因转移(HGT)传递的。我们扩大了对莽草酸途径基因的采样和分析范围,将卵菌纲、纤毛虫、硅藻、担子菌、接合菌以及绿藻和红藻纳入其中。嗜热四膜虫的cDNA测序证实了存在一种与真菌和弓形虫中一样的五聚体芳香族氨基酸合成酶。系统发育和分类单元分布表明,芳香族氨基酸合成酶基因融合事件可能是一种古老的真核生物创新。相反,植物谱系(这里由绿藻门和红藻代表)在莽草酸途径的所有七个步骤中获得了不同的原核基因。其中两个系统发育分析表明植物基因源自蓝细菌质体祖先基因组,但如果整个植物途径最初起源于蓝细菌,那么其他五个莽草酸途径基因至少是从另外两个真细菌基因组中获得的。因此,系统发育分析表明,在植物进化枝中,通过初级HGT转移或通过质体祖先基因组的二次转移,既存在单独的HGT,也存在共享的衍生HGT。共享的衍生特征支持了植物谱系的全源性和单一祖先的初级质体内共生。我们的分析还确定了至少50个基因/结构域丢失事件,表明丢失和替换事件一直是真核生物基因组进化中的一个重要过程。

相似文献

2
The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects.
J Gen Microbiol. 1993 Dec;139(12):2891-9. doi: 10.1099/00221287-139-12-2891.
7
A complete shikimate pathway in Toxoplasma gondii: an ancient eukaryotic innovation.
Int J Parasitol. 2004 Jan;34(1):5-13. doi: 10.1016/j.ijpara.2003.10.006.
8
Endosymbiotic origin and differential loss of eukaryotic genes.
Nature. 2015 Aug 27;524(7566):427-32. doi: 10.1038/nature14963. Epub 2015 Aug 19.
9
Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
Mol Biol Evol. 2006 Mar;23(3):663-74. doi: 10.1093/molbev/msj075. Epub 2005 Dec 15.

引用本文的文献

2
Plant terrestrialization: an environmental pull on the evolution of multi-sourced streptophyte phenolics.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230358. doi: 10.1098/rstb.2023.0358. Epub 2024 Sep 30.
3
Evolution of aromatic amino acid metabolism in plants: a key driving force behind plant chemical diversity in aromatic natural products.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230352. doi: 10.1098/rstb.2023.0352. Epub 2024 Sep 30.
4
The β-subunit of tryptophan synthase is a latent tyrosine synthase.
Nat Chem Biol. 2024 Aug;20(8):1086-1093. doi: 10.1038/s41589-024-01619-z. Epub 2024 May 14.
5
Non-canonical two-step biosynthesis of anti-oomycete indole alkaloids in Kickxellales.
Fungal Biol Biotechnol. 2023 Sep 5;10(1):19. doi: 10.1186/s40694-023-00166-x.
7
A systems level approach to study metabolic networks in prokaryotes with the aromatic amino acid biosynthesis pathway.
Front Genet. 2023 Jan 16;13:1084727. doi: 10.3389/fgene.2022.1084727. eCollection 2022.
9
Rethinking the Intrinsic Sensitivity of Fungi to Glyphosate.
BioTech (Basel). 2022 Jul 26;11(3):28. doi: 10.3390/biotech11030028.

本文引用的文献

1
4
Myosin domain evolution and the primary divergence of eukaryotes.
Nature. 2005 Aug 25;436(7054):1113-8. doi: 10.1038/nature03949.
5
Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
Curr Biol. 2005 Jul 26;15(14):1325-30. doi: 10.1016/j.cub.2005.06.040.
6
PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W557-9. doi: 10.1093/nar/gki352.
7
Shikimate and folate pathways in the protozoan parasite, Perkinsus olseni.
Mol Biochem Parasitol. 2005 Jul;142(1):106-9. doi: 10.1016/j.molbiopara.2005.03.014. Epub 2005 Apr 8.
9
Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.
Mol Biol Evol. 2005 Jan;22(1):85-90. doi: 10.1093/molbev/msh254. Epub 2004 Sep 8.
10
The real 'kingdoms' of eukaryotes.
Curr Biol. 2004 Sep 7;14(17):R693-6. doi: 10.1016/j.cub.2004.08.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验