Richards Thomas A, Dacks Joel B, Campbell Samantha A, Blanchard Jeffrey L, Foster Peter G, McLeod Rima, Roberts Craig W
Deparment of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
Eukaryot Cell. 2006 Sep;5(9):1517-31. doi: 10.1128/EC.00106-06.
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.
目前,莽草酸途径被报道为原核生物、子囊菌、顶复门寄生虫和植物的一种代谢特征。植物的莽草酸途径酶与原核生物的同源物相似,并且主要在叶绿体中发挥作用,这表明其起源于质体祖先基因组。同样拥有源自藻类的质体细胞器的弓形虫,编码了一条与子囊菌基因相似的莽草酸途径,包括一种五酶五功能芳香族氨基酸合成酶(arom)。这些数据表明,莽草酸途径和五功能芳香族氨基酸合成酶要么在真核生物中有着古老的起源,要么是通过真核生物到真核生物的水平基因转移(HGT)传递的。我们扩大了对莽草酸途径基因的采样和分析范围,将卵菌纲、纤毛虫、硅藻、担子菌、接合菌以及绿藻和红藻纳入其中。嗜热四膜虫的cDNA测序证实了存在一种与真菌和弓形虫中一样的五聚体芳香族氨基酸合成酶。系统发育和分类单元分布表明,芳香族氨基酸合成酶基因融合事件可能是一种古老的真核生物创新。相反,植物谱系(这里由绿藻门和红藻代表)在莽草酸途径的所有七个步骤中获得了不同的原核基因。其中两个系统发育分析表明植物基因源自蓝细菌质体祖先基因组,但如果整个植物途径最初起源于蓝细菌,那么其他五个莽草酸途径基因至少是从另外两个真细菌基因组中获得的。因此,系统发育分析表明,在植物进化枝中,通过初级HGT转移或通过质体祖先基因组的二次转移,既存在单独的HGT,也存在共享的衍生HGT。共享的衍生特征支持了植物谱系的全源性和单一祖先的初级质体内共生。我们的分析还确定了至少50个基因/结构域丢失事件,表明丢失和替换事件一直是真核生物基因组进化中的一个重要过程。