Scales Nathan, Tait R Niall
Department of Electronics, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
J Chem Phys. 2006 Sep 7;125(9):094714. doi: 10.1063/1.2335846.
This work presents analytical solutions for both pressure-driven and electroosmotic flows in microchannels incorporating porous media. Solutions are based on a volume-averaged flow model using a scaling of the Navier-Stokes equations for fluid flow. The general model allows analysis of fluid flow in channels with porous regions bordering open regions and includes viscous forces, permitting consideration of porosity and zeta potential variations near channel walls. To obtain analytical solutions problems are constrained to the linearized Poisson-Boltzmann equation and a variation of Brinkman's equation [Appl. Sci. Res., Sect. A 1, 27 (1947); 1, 81 (1947)]. Cases include one continuous porous medium, two adjacent regions of different porosities, or one open channel adjacent to a porous region, and the porous material may have a different zeta potential than that of the channel walls. Solutions are described for two geometries, including flow between two parallel plates or in a cylinder. The model illustrates the relative importance of porosity and zeta potential in different regions of each channel.
这项工作给出了包含多孔介质的微通道中压力驱动流和电渗流的解析解。这些解基于一个体积平均流模型,该模型使用了流体流动的纳维 - 斯托克斯方程的尺度变换。通用模型允许分析具有与开放区域相邻的多孔区域的通道中的流体流动,并且包括粘性力,从而能够考虑通道壁附近的孔隙率和zeta电位变化。为了获得解析解,问题被限制在线性化的泊松 - 玻尔兹曼方程和布林克曼方程的一个变体[《应用科学研究》,A辑1,27(1947);1,81(1947)]。情况包括一种连续多孔介质、两个不同孔隙率的相邻区域,或者一个与多孔区域相邻的开放通道,并且多孔材料的zeta电位可能与通道壁的不同。针对两种几何形状描述了解,包括两个平行板之间的流动或圆柱体内的流动。该模型说明了每个通道不同区域中孔隙率和zeta电位的相对重要性。