Garza-Sánchez Fernando, Janssen Brian D, Hayes Christopher S
Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA.
J Biol Chem. 2006 Nov 10;281(45):34258-68. doi: 10.1074/jbc.M608052200. Epub 2006 Sep 12.
Translational pausing can lead to cleavage of the A-site codon and facilitate recruitment of the transfer-messenger RNA (tmRNA) (SsrA) quality control system to distressed ribosomes. We asked whether aminoacyl-tRNA binding site (A-site) mRNA cleavage occurs during regulatory translational pausing using the Escherichia coli SecM-mediated ribosome arrest as a model. We find that SecM ribosome arrest does not elicit efficient A-site cleavage, but instead allows degradation of downstream mRNA to the 3'-edge of the arrested ribosome. Characterization of SecM-arrested ribosomes shows the nascent peptide is covalently linked via glycine 165 to tRNA(3Gly) in the peptidyl-tRNA binding site, and prolyl-tRNA(2Pro) is bound to the A-site. Although A-site-cleaved mRNAs were not detected, tmRNA-mediated ssrA tagging after SecM glycine 165 was observed. This tmRNA activity results from sequestration of prolyl-tRNA(2Pro) on overexpressed SecM-arrested ribosomes, which produces a second population of stalled ribosomes with unoccupied A-sites. Indeed, compensatory overexpression of tRNA(2Pro) readily inhibits ssrA tagging after glycine 165, but has no effect on the duration of SecM ribosome arrest. We conclude that, under physiological conditions, the architecture of SecM-arrested ribosomes allows regulated translational pausing without interference from A-site cleavage or tmRNA activities. Moreover, it seems likely that A-site mRNA cleavage is generally avoided or inhibited during regulated ribosome pauses.
翻译暂停可导致A位点密码子的切割,并促进转运信使RNA(tmRNA)(SsrA)质量控制系统募集到受损核糖体。我们以大肠杆菌SecM介导的核糖体停滞为模型,探究了在调节性翻译暂停过程中,氨酰基tRNA结合位点(A位点)的mRNA是否会发生切割。我们发现,SecM核糖体停滞不会引发有效的A位点切割,而是会使下游mRNA降解至停滞核糖体的3'端。对SecM停滞核糖体的表征显示,新生肽通过甘氨酸165与肽基tRNA结合位点中的tRNA(3Gly)共价连接,脯氨酰tRNA(2Pro)则结合在A位点。虽然未检测到A位点切割的mRNA,但在SecM甘氨酸165之后观察到了tmRNA介导的ssrA标记。这种tmRNA活性是由于脯氨酰tRNA(2Pro)在过表达的SecM停滞核糖体上被隔离,从而产生了第二批A位点未被占据的停滞核糖体。事实上,tRNA(2Pro)的补偿性过表达很容易抑制甘氨酸165之后的ssrA标记,但对SecM核糖体停滞的持续时间没有影响。我们得出结论,在生理条件下,SecM停滞核糖体的结构允许进行调节性翻译暂停,而不受A位点切割或tmRNA活性的干扰。此外,在调节性核糖体暂停过程中,A位点mRNA切割似乎通常会被避免或抑制。