Suppr超能文献

一种基于知识的迭代评分函数用于预测蛋白质-配体相互作用:I. 相互作用势的推导

An iterative knowledge-based scoring function to predict protein-ligand interactions: I. Derivation of interaction potentials.

作者信息

Huang Sheng-You, Zou Xiaoqin

机构信息

Department of Biochemistry, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

J Comput Chem. 2006 Nov 30;27(15):1866-75. doi: 10.1002/jcc.20504.

Abstract

Using a novel iterative method, we have developed a knowledge-based scoring function (ITScore) to predict protein-ligand interactions. The pair potentials for ITScore were derived from a training set of 786 protein-ligand complex structures in the Protein Data Bank. Twenty-six atom types were used based on the atom type category of the SYBYL software. The iterative method circumvents the long-standing reference state problem in the derivation of knowledge-based scoring functions. The basic idea is to improve pair potentials by iteration until they correctly discriminate experimentally determined binding modes from decoy ligand poses for the ligand-protein complexes in the training set. The iterative method is efficient and normally converges within 20 iterative steps. The scoring function based on the derived potentials was tested on a diverse set of 140 protein-ligand complexes for affinity prediction, yielding a high correlation coefficient of 0.74. Because ITScore uses SYBYL-defined atom types, this scoring function is easy to use for molecular files prepared by SYBYL or converted by software such as BABEL.

摘要

我们使用一种新颖的迭代方法开发了一种基于知识的评分函数(ITScore),用于预测蛋白质 - 配体相互作用。ITScore的对势源自蛋白质数据库中786个蛋白质 - 配体复合物结构的训练集。基于SYBYL软件的原子类型类别使用了26种原子类型。这种迭代方法规避了基于知识的评分函数推导中长期存在的参考状态问题。其基本思想是通过迭代改进对势,直到它们能够正确区分训练集中配体 - 蛋白质复合物的实验确定的结合模式与诱饵配体构象。该迭代方法效率高,通常在20次迭代步骤内收敛。基于推导势的评分函数在一组140个不同的蛋白质 - 配体复合物上进行了亲和力预测测试,得到了0.74的高相关系数。由于ITScore使用SYBYL定义的原子类型,因此该评分函数易于用于由SYBYL制备或由BABEL等软件转换的分子文件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验