Suppr超能文献

协同区域化单分辨率和多分辨率空间变化生长曲线建模及其在杂草生长中的应用

Coregionalized single- and multiresolution spatially varying growth curve modeling with application to weed growth.

作者信息

Banerjee Sudipto, Johnson Gregg A

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

Biometrics. 2006 Sep;62(3):864-76. doi: 10.1111/j.1541-0420.2006.00535.x.

Abstract

Modeling of longitudinal data from agricultural experiments using growth curves helps understand conditions conducive or unconducive to crop growth. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data that help understand spatial patterns. A particularly common problem is capturing spatial variation in growth patterns over the entire experimental domain. Statistical modeling in these settings can be challenging because agricultural designs are often spatially replicated, with arrays of subplots, and interest lies in capturing spatial variation at possibly different resolutions. In this article, we develop a framework for modeling spatially varying growth curves as Gaussian processes that capture associations at single and multiple resolutions. We provide Bayesian hierarchical models for this setting, where flexible parameterization enables spatial estimation and prediction of growth curves. We illustrate using data from weed growth experiments conducted in Waseca, Minnesota, that recorded growth of the weed Setaria spp. in a spatially replicated design.

摘要

利用生长曲线对农业实验的纵向数据进行建模,有助于了解有利于或不利于作物生长的条件。地理信息系统(GIS)的最新进展现在允许对农业数据进行地理编码,这有助于了解空间模式。一个特别常见的问题是捕捉整个实验区域内生长模式的空间变化。在这些情况下进行统计建模可能具有挑战性,因为农业设计通常在空间上重复,有子图阵列,并且关注点在于捕捉可能不同分辨率下的空间变化。在本文中,我们开发了一个框架,将空间变化的生长曲线建模为高斯过程,以捕捉单分辨率和多分辨率下的关联。我们为这种情况提供贝叶斯层次模型,其中灵活的参数化能够对生长曲线进行空间估计和预测。我们使用在明尼苏达州瓦西卡进行的杂草生长实验数据进行说明,该实验在空间重复设计中记录了狗尾草属杂草的生长情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验