Ko ByoungChul, Seo MiSuk, Nam Jae-Yeal
Shindang-dong Dalseo-gu, Department of Computer Engineering, Keimyung University, Daegu, South Korea.
J Digit Imaging. 2009 Jun;22(3):259-74. doi: 10.1007/s10278-008-9129-9. Epub 2008 Jun 17.
This paper presents an adaptive attention window (AAW)-based microscopic cell nuclei segmentation method. For semantic AAW detection, a luminance map is used to create an initial attention window, which is then reduced close to the size of the real region of interest (ROI) using a quad-tree. The purpose of the AAW is to facilitate background removal and reduce the ROI segmentation processing time. Region segmentation is performed within the AAW, followed by region clustering and removal to produce segmentation of only ROIs. Experimental results demonstrate that the proposed method can efficiently segment one or more ROIs and produce similar segmentation results to human perception. In future work, the proposed method will be used for supporting a region-based medical image retrieval system that can generate a combined feature vector of segmented ROIs based on extraction and patient data.
本文提出了一种基于自适应注意力窗口(AAW)的微观细胞核分割方法。对于语义AAW检测,使用亮度图创建初始注意力窗口,然后使用四叉树将其缩小至接近真实感兴趣区域(ROI)的大小。AAW的目的是便于去除背景并减少ROI分割处理时间。在AAW内进行区域分割,随后进行区域聚类和去除,以仅生成ROI的分割结果。实验结果表明,该方法能够有效地分割一个或多个ROI,并产生与人类感知相似的分割结果。在未来的工作中,该方法将用于支持基于区域的医学图像检索系统,该系统可以基于提取的内容和患者数据生成分割后的ROI的组合特征向量。