Suppr超能文献

用于病理细胞核分割的多尺度变压器和多注意力机制网络。

Multiscale transformers and multi-attention mechanism networks for pathological nuclei segmentation.

作者信息

Du Yongzhao, Chen Xin, Fu Yuqing

机构信息

College of Engineering, Huaqiao University, Fujian, 362021, China.

College of Internet of Things Industry, Huaqiao University, Fujian, 362021, China.

出版信息

Sci Rep. 2025 Apr 12;15(1):12549. doi: 10.1038/s41598-025-90397-2.

Abstract

Pathology nuclei segmentation is crucial of computer-aided diagnosis in pathology. However, due to the high density, complex backgrounds, and blurred cell boundaries, it makes pathology cell segmentation still a challenging problem. In this paper, we propose a network model for pathology image segmentation based on a multi-scale Transformer multi-attention mechanism. To solve the problem that the high density of cell nuclei and the complexity of the background make it difficult to extract features, a dense attention module is embedded in the encoder, which improves the learning of the target cell information to minimize target information loss; Additionally, to solve the problem of poor segmentation accuracy due to the blurred cell boundaries, the Multi-scale Transformer Attention module is embedded between encoder and decoder, improving the transfer of the boundary feature information and makes the segmented cell boundaries more accurate. Experimental results on MoNuSeg, GlaS and CoNSeP datasets demonstrate the network's superior accuracy.

摘要

病理细胞核分割是病理学计算机辅助诊断的关键。然而,由于细胞核密度高、背景复杂以及细胞边界模糊,病理细胞分割仍然是一个具有挑战性的问题。在本文中,我们提出了一种基于多尺度Transformer多注意力机制的病理图像分割网络模型。为了解决细胞核密度高和背景复杂导致特征提取困难的问题,在编码器中嵌入了密集注意力模块,该模块改善了对目标细胞信息的学习,以最小化目标信息损失;此外,为了解决由于细胞边界模糊导致分割精度差的问题,在编码器和解码器之间嵌入了多尺度Transformer注意力模块,改善了边界特征信息的传递,使分割出的细胞边界更加准确。在MoNuSeg、GlaS和CoNSeP数据集上的实验结果证明了该网络具有卓越的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d7/11993704/05eb08a11dcc/41598_2025_90397_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验