Suppr超能文献

西尼罗河病毒包膜糖蛋白的晶体结构

Crystal structure of the West Nile virus envelope glycoprotein.

作者信息

Nybakken Grant E, Nelson Christopher A, Chen Beverly R, Diamond Michael S, Fremont Daved H

机构信息

Department of Pathology & Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA.

出版信息

J Virol. 2006 Dec;80(23):11467-74. doi: 10.1128/JVI.01125-06. Epub 2006 Sep 20.

Abstract

The envelope glycoprotein (E) of West Nile virus (WNV) undergoes a conformational rearrangement triggered by low pH that results in a class II fusion event required for viral entry. Herein we present the 3.0-A crystal structure of the ectodomain of WNV E, which reveals insights into the flavivirus life cycle. We found that WNV E adopts a three-domain architecture that is shared by the E proteins from dengue and tick-borne encephalitis viruses and forms a rod-shaped configuration similar to that observed in immature flavivirus particles. Interestingly, the single N-linked glycosylation site on WNV E is displaced by a novel alpha-helix, which could potentially alter lectin-mediated attachment. The localization of histidines within the hinge regions of E implicates these residues in pH-induced conformational transitions. Most strikingly, the WNV E ectodomain crystallized as a monomer, in contrast to other flavivirus E proteins, which have crystallized as antiparallel dimers. WNV E assembles in a crystalline lattice of perpendicular molecules, with the fusion loop of one E protein buried in a hydrophobic pocket at the DI-DIII interface of another. Dimeric E proteins pack their fusion loops into analogous pockets at the dimer interface. We speculate that E proteins could pivot around the fusion loop-pocket junction, allowing virion conformational transitions while minimizing fusion loop exposure.

摘要

西尼罗河病毒(WNV)的包膜糖蛋白(E)会经历由低pH触发的构象重排,这会导致病毒进入所需的II类融合事件。在此,我们展示了WNV E胞外域的3.0埃晶体结构,该结构揭示了对黄病毒生命周期的见解。我们发现WNV E采用了一种由登革热病毒和蜱传脑炎病毒的E蛋白共享的三结构域架构,并形成了一种类似于在未成熟黄病毒颗粒中观察到的杆状结构。有趣的是,WNV E上的单个N - 糖基化位点被一个新的α - 螺旋取代,这可能会改变凝集素介导的附着。E铰链区内组氨酸的定位表明这些残基参与了pH诱导的构象转变。最引人注目的是,与其他已结晶为反平行二聚体的黄病毒E蛋白不同,WNV E胞外域结晶为单体。WNV E在垂直分子的晶格中组装,一个E蛋白的融合环埋在另一个E蛋白DI - DIII界面的疏水口袋中。二聚体E蛋白将它们的融合环包装到二聚体界面的类似口袋中。我们推测E蛋白可以围绕融合环 - 口袋连接处旋转,在使融合环暴露最小化的同时允许病毒体构象转变。

相似文献

1
Crystal structure of the West Nile virus envelope glycoprotein.
J Virol. 2006 Dec;80(23):11467-74. doi: 10.1128/JVI.01125-06. Epub 2006 Sep 20.
2
Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes.
J Virol. 2006 Nov;80(22):11000-8. doi: 10.1128/JVI.01735-06. Epub 2006 Aug 30.
3
Sequential conformational rearrangements in flavivirus membrane fusion.
Elife. 2014 Dec 5;3:e04389. doi: 10.7554/eLife.04389.
4
5
N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity.
J Virol. 2005 Nov;79(21):13262-74. doi: 10.1128/JVI.79.21.13262-13274.2005.
6
Peptide inhibitors of dengue virus and West Nile virus infectivity.
Virol J. 2005 Jun 1;2:49. doi: 10.1186/1743-422X-2-49.
7
Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein.
J Virol. 2006 Dec;80(24):12149-59. doi: 10.1128/JVI.01732-06. Epub 2006 Oct 11.
8
Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence.
J Virol. 2016 Apr 14;90(9):4757-4770. doi: 10.1128/JVI.02861-15. Print 2016 May.
9
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
J Virol. 2006 Feb;80(3):1290-301. doi: 10.1128/JVI.80.3.1290-1301.2006.
10
A West Nile virus mutant with increased resistance to acid-induced inactivation.
J Gen Virol. 2011 Apr;92(Pt 4):831-40. doi: 10.1099/vir.0.027185-0. Epub 2011 Jan 12.

引用本文的文献

2
West Nile virus - a re-emerging global threat: recent advances in vaccines and drug discovery.
Front Cell Infect Microbiol. 2025 May 15;15:1568031. doi: 10.3389/fcimb.2025.1568031. eCollection 2025.
3
Neutralization Tests for Quantification of Specific Antibodies Against Yellow Fever Virus.
Methods Mol Biol. 2025;2913:79-92. doi: 10.1007/978-1-0716-4458-4_8.
4
Nano-interventions for dengue: a comprehensive review of control, detection and treatment strategies.
Inflammopharmacology. 2025 Mar;33(3):979-1011. doi: 10.1007/s10787-025-01655-8. Epub 2025 Feb 20.
5
Complex patterns of WNV evolution: a focus on the Western Balkans and Central Europe.
Front Vet Sci. 2024 Nov 20;11:1494746. doi: 10.3389/fvets.2024.1494746. eCollection 2024.
7
Likely Overstabilization of Charge-Charge Interactions in CHARMM36m(w): A Case for a99SB-disp Water.
J Phys Chem B. 2024 Nov 28;128(47):11554-11564. doi: 10.1021/acs.jpcb.4c04777. Epub 2024 Nov 13.
10
West Nile Virus Infection in Occupational Settings-A Systematic Review.
Pathogens. 2024 Feb 9;13(2):157. doi: 10.3390/pathogens13020157.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
J Virol. 2006 Feb;80(3):1290-301. doi: 10.1128/JVI.80.3.1290-1301.2006.
4
West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States.
Annu Rev Med. 2006;57:181-94. doi: 10.1146/annurev.med.57.121304.131418.
6
N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity.
J Virol. 2005 Nov;79(21):13262-74. doi: 10.1128/JVI.79.21.13262-13274.2005.
8
Structural basis of West Nile virus neutralization by a therapeutic antibody.
Nature. 2005 Sep 29;437(7059):764-9. doi: 10.1038/nature03956.
10
Characterization of neutralizing antibodies to West Nile virus.
Virology. 2005 May 25;336(1):70-82. doi: 10.1016/j.virol.2005.02.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验