Suppr超能文献

西尼罗河病毒包膜糖蛋白的晶体结构揭示了病毒表面表位。

Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes.

作者信息

Kanai Ryuta, Kar Kalipada, Anthony Karen, Gould L Hannah, Ledizet Michel, Fikrig Erol, Marasco Wayne A, Koski Raymond A, Modis Yorgo

机构信息

266Department of Molecular Biophysics and Biochemistry, The Bass Center for Structural Biology, Yale University, 266 Whitney Ave., New Haven, Connecticut 06520, USA.

出版信息

J Virol. 2006 Nov;80(22):11000-8. doi: 10.1128/JVI.01735-06. Epub 2006 Aug 30.

Abstract

West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

摘要

西尼罗河病毒是黄病毒属的成员,可引起发热,进而发展为危及生命的脑炎。这些病毒的主要包膜糖蛋白E通过膜融合介导病毒的附着和进入。我们已经确定了西尼罗河病毒E的可溶性片段的晶体结构。该结构与登革热病毒和蜱传脑炎病毒的E蛋白具有相同的整体折叠。然而,结构域II的构象与其他预融合E结构不同,类似于融合后E结构中结构域II的构象。中和西尼罗河病毒特异性抗体的表位定位于结构域III的一个区域,该区域暴露于病毒表面并与受体结合有关。相比之下,我们发现某些可交叉中和西尼罗河病毒和登革热病毒的重组治疗性抗体,结合来自结构域I的一个肽段,该肽段仅在膜融合转变过程中暴露。通过揭示西尼罗河病毒表面分子景观的细节,我们的结构将有助于抗病毒疫苗和治疗药物的设计。

相似文献

1
Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes.
J Virol. 2006 Nov;80(22):11000-8. doi: 10.1128/JVI.01735-06. Epub 2006 Aug 30.
2
Structural basis of West Nile virus neutralization by a therapeutic antibody.
Nature. 2005 Sep 29;437(7059):764-9. doi: 10.1038/nature03956.
3
Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence.
J Virol. 2016 Apr 14;90(9):4757-4770. doi: 10.1128/JVI.02861-15. Print 2016 May.
4
Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein.
J Virol. 2005 Jan;79(2):1223-31. doi: 10.1128/JVI.79.2.1223-1231.2005.
6
CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection.
Front Immunol. 2020 Jan 23;11:16. doi: 10.3389/fimmu.2020.00016. eCollection 2020.
7
Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica.
Virology. 1998 Jul 5;246(2):317-28. doi: 10.1006/viro.1998.9200.
9
Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III.
Virology. 2016 Sep;496:97-105. doi: 10.1016/j.virol.2016.05.024. Epub 2016 Jun 7.

引用本文的文献

4
Re-burying Artificially Exposed Surface of Viral Subunit Vaccines Through Oligomerization Enhances Vaccine Efficacy.
Front Cell Infect Microbiol. 2022 Jun 29;12:927674. doi: 10.3389/fcimb.2022.927674. eCollection 2022.
5
Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins.
Nat Commun. 2022 Jul 6;13(1):3880. doi: 10.1038/s41467-022-31564-1.
7
Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers.
Mol Cell Biochem. 2022 Mar;477(3):815-832. doi: 10.1007/s11010-021-04326-8. Epub 2022 Jan 21.
8
RCSB Protein Data Bank resources for structure-facilitated design of mRNA vaccines for existing and emerging viral pathogens.
Structure. 2022 Jan 6;30(1):55-68.e2. doi: 10.1016/j.str.2021.10.008. Epub 2021 Nov 4.
9
New Insights into the Biology of the Emerging Tembusu Virus.
Pathogens. 2021 Aug 10;10(8):1010. doi: 10.3390/pathogens10081010.
10
Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems.
Virology. 2021 Oct;562:50-62. doi: 10.1016/j.virol.2021.07.004. Epub 2021 Jul 8.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus.
Virology. 2006 Sep 15;353(1):35-40. doi: 10.1016/j.virol.2006.05.025. Epub 2006 Jun 27.
4
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
J Virol. 2006 Feb;80(3):1290-301. doi: 10.1128/JVI.80.3.1290-1301.2006.
5
West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States.
Annu Rev Med. 2006;57:181-94. doi: 10.1146/annurev.med.57.121304.131418.
6
Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus.
J Virol. 2005 Dec;79(23):14606-13. doi: 10.1128/JVI.79.23.14606-14613.2005.
8
Structural basis of West Nile virus neutralization by a therapeutic antibody.
Nature. 2005 Sep 29;437(7059):764-9. doi: 10.1038/nature03956.
10
Characterization of neutralizing antibodies to West Nile virus.
Virology. 2005 May 25;336(1):70-82. doi: 10.1016/j.virol.2005.02.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验