Suppr超能文献

瓣鳃纲动物抓握肌强直收缩的能量消耗

Energy cost of tonic contraction in a lamellibranch catch muscle.

作者信息

Baguet F, Gillis J M

出版信息

J Physiol. 1968 Sep;198(1):127-43. doi: 10.1113/jphysiol.1968.sp008597.

Abstract
  1. The oxygen consumption of isolated anterior byssus retractor muscle (ABRM) of Mytilus edulis was measured during tonic contraction induced by acetylcholine (ACh).2. The respiration was measured with an oxygen electrode during 95 min, divided into one period of 5 min and six successive periods of 15 min.3. Tonic contraction induced a prolonged increase of the basal respiration that slowly diminished with a time course roughly similar to that of the tonic tension.4. For each period of measurement, the excess respiration over the resting level could be analysed into a constant amount and an amount that depended on the maintained tonic tension. The analysis was performed by fitting regression equations of the type Y = Q+bP, where Y is the excess respiration in n-moles O(2)/g.min, and P, the isometric tension (kg/cm(2)); term b of the equation expresses the amount of oxygen consumption directly proportional to the tonic tension.5. During the first 20 min of contraction, terms b of the equations are not significant, and most of the excess respiration (terms Q) is independent of the tension. The oxygen consumed during this time is supposed to reflect the recovery metabolism for the energy cost of the development of the tension.6. From the 20th to the 80th min of contraction, terms Q are reduced and terms b are significant and constant. The excess respiration during this period is equal to 16.9 (+/-0.5) n-moles O(2)/g.min + P x 6.8 (+/-0.5) n-moles O(2)/kg.cm.min (+/-S.E. of the means, n = 24).7. During a tonic contraction suppression of tension by a release reduced the oxygen consumption which increased again when tension was restored by stretching the muscle back to its original length. This confirmed the role of tension in determining the intensity of respiration during the catch.8. The oxygen consumption related to this tension restored by stretching the muscle, varied from 8.0 to 12.3 n-moles O(2)/kg.cm.min. These figures are of the same order of magnitude as the coefficient b obtained in the case of tonic contraction without modification of tension by length changes.9. These results are taken as a demonstration that the maintenance of tonic tension is an ;active' phenomenon with a metabolic counterpart.
摘要
  1. 测量了紫贻贝离体前足丝牵缩肌(ABRM)在乙酰胆碱(ACh)诱导的强直收缩过程中的耗氧量。

  2. 在95分钟内用氧电极测量呼吸,分为一个5分钟的时间段和六个连续的15分钟时间段。

  3. 强直收缩导致基础呼吸的持续增加,其随时间缓慢下降,时间进程大致与强直张力相似。

  4. 对于每个测量时间段,静息水平以上的额外呼吸可分为一个常量和一个取决于维持的强直张力的量。通过拟合Y = Q + bP类型的回归方程进行分析,其中Y是每克每分钟的额外呼吸量(n - 摩尔O₂),P是等长张力(千克/平方厘米);方程的b项表示与强直张力成正比的耗氧量。

  5. 在收缩的前20分钟内,方程的b项不显著,大部分额外呼吸(Q项)与张力无关。这段时间消耗的氧气被认为反映了张力发展的能量成本的恢复代谢。

  6. 从收缩的第20分钟到第80分钟,Q项减少,b项显著且恒定。此期间的额外呼吸量等于16.9(±0.5)n - 摩尔O₂/克·分钟 + P × 6.8(±0.5)n - 摩尔O₂/千克·厘米·分钟(±平均值的标准误差,n = 24)。

  7. 在强直收缩期间,通过放松降低张力会减少耗氧量,当通过将肌肉拉伸回原始长度恢复张力时,耗氧量又会增加。这证实了张力在决定强直收缩期间呼吸强度中的作用。

  8. 通过拉伸肌肉恢复的这种张力相关的耗氧量在8.0至12.3 n - 摩尔O₂/千克·厘米·分钟之间变化。这些数值与在无长度变化引起的张力改变的强直收缩情况下获得的系数b处于相同数量级。

  9. 这些结果被视为强直张力的维持是一种具有代谢对应物的“主动”现象的证明。

相似文献

1
Energy cost of tonic contraction in a lamellibranch catch muscle.
J Physiol. 1968 Sep;198(1):127-43. doi: 10.1113/jphysiol.1968.sp008597.
4
45Ca efflux from anterior byssus retractor muscle in phasic and catch contraction.
Am J Physiol. 1975 Nov;229(5):1237-43. doi: 10.1152/ajplegacy.1975.229.5.1237.
5
Relation between length, isometric force, and O2 consumption rate in vascular smooth muscle.
Am J Physiol. 1975 Mar;228(3):915-22. doi: 10.1152/ajplegacy.1975.228.3.915.
6
Tonic contraction and the control of relaxation in a chemically skinned molluscan smooth muscle.
J Gen Physiol. 1982 May;79(5):821-34. doi: 10.1085/jgp.79.5.821.
7
Net calcium fluxes in anterior byssus retractor muscle with phasic and catch contraction.
Am J Physiol. 1975 Nov;229(5):1244-8. doi: 10.1152/ajplegacy.1975.229.5.1244.
10
Oxygen consumption and lactate production of the rat portal vein in relation to its contractile activity.
Acta Physiol Scand. 1977 May;100(1):91-106. doi: 10.1111/j.1748-1716.1977.tb05925.x.

引用本文的文献

1
Calcium-dependent titin-thin filament interactions in muscle: observations and theory.
J Muscle Res Cell Motil. 2020 Mar;41(1):125-139. doi: 10.1007/s10974-019-09540-y. Epub 2019 Jul 9.
2
Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics.
BMC Genomics. 2018 May 22;19(1):377. doi: 10.1186/s12864-018-4770-2.
3
Myosin Mg-ATPase of molluscan muscles is slightly activated by F-actin under catch state in vitro.
J Muscle Res Cell Motil. 2013 May;34(2):115-23. doi: 10.1007/s10974-013-9339-8. Epub 2013 Mar 28.
4
Mechanism of catch force: tethering of thick and thin filaments by twitchin.
J Biomed Biotechnol. 2010;2010:725207. doi: 10.1155/2010/725207. Epub 2010 Jun 23.
5
The occurrence of tissue-specific twitchin isoforms in the mussel Mytilus galloprovincialis.
Fish Sci. 2008 Jun 1;74(3):677-686. doi: 10.1111/j.1444-2906.2008.01574.x.
6
Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.
Prog Neurobiol. 2008 Oct;86(2):72-127. doi: 10.1016/j.pneurobio.2008.06.004. Epub 2008 Jun 20.
7
Myosin cross-bridge kinetics and the mechanism of catch.
Biophys J. 2007 Jul 15;93(2):554-65. doi: 10.1529/biophysj.107.105577. Epub 2007 Apr 27.
9
The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle.
Biophys J. 2001 Jan;80(1):415-26. doi: 10.1016/S0006-3495(01)76024-9.
10
Regulation of catch muscle by twitchin phosphorylation: effects on force, ATPase, and shortening.
Biophys J. 1998 Oct;75(4):1904-14. doi: 10.1016/S0006-3495(98)77631-3.

本文引用的文献

2
Oxidation processes occurring in the system plasma (serum)-potassium ferricyanide.
J Physiol. 1928 Mar 30;65(1):1-14. doi: 10.1113/jphysiol.1928.sp002456.
3
Ultrastructure of invertebrate smooth muscles.
Physiol Rev Suppl. 1962 Jul;5:34-47.
4
The nature of the phasic and the tonic responses of the anterior byssal retractor muscle of Mytilus.
J Physiol. 1959 Dec;149(1):154-77. doi: 10.1113/jphysiol.1959.sp006332.
5
CONTRACTION IN THE OPAQUE PART OF THE ADDUCTOR MUSCLE OF THE OYSTER (CRASSOSTREA ANGULATA).
J Physiol. 1964 Sep;173(2):238-62. doi: 10.1113/jphysiol.1964.sp007455.
6
Paramyosin and contraction of catch muscles.
Science. 1959 Jul 17;130(3368):160-1. doi: 10.1126/science.130.3368.160.
7
Invertebrate tropomyosin.
Biochim Biophys Acta. 1957 Jun;24(3):612-9. doi: 10.1016/0006-3002(57)90255-x.
8
[Respiration of striated and smooth muscles of cold-blooded animals during resting, stretching, contraction and contracture].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1955;260(6):524-37. doi: 10.1007/BF00363669.
9
Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine.
J Cell Comp Physiol. 1954 Aug;44(1):141-63. doi: 10.1002/jcp.1030440112.
10
Measurements of oxygen consumption in smooth muscle.
J Physiol. 1953 Oct;122(1):111-34. doi: 10.1113/jphysiol.1953.sp004983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验