Suppr超能文献

肌球蛋白横桥动力学与抓力机制

Myosin cross-bridge kinetics and the mechanism of catch.

作者信息

Franke Aaron S, Mooers Susan U, Narayan Srinivasa R, Siegman Marion J, Butler Thomas M

机构信息

Department of Molecular Physiology and Biophysics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

出版信息

Biophys J. 2007 Jul 15;93(2):554-65. doi: 10.1529/biophysj.107.105577. Epub 2007 Apr 27.

Abstract

Catch force in molluscan smooth muscle requires little, if any, energy input and is controlled by the phosphorylation state of the thick filament-associated mini-titin, twitchin. The kinetic parameters of myosin cross-bridge turnover in permeabilized catch muscle, and how they are potentially modified by the catch mechanism, were determined by single turnover measurements on myosin-bound ADP. Under isometric conditions, there are fast and slow components of cross-bridge turnover that probably result from kinetic separation of calcium-bound and calcium-free cross-bridge pools. The structure responsible for catch force maintenance at intermediate [Ca+2] does not alter the processes responsible for the fast and slow components under isometric conditions. Also, there is no measurable turnover of myosin-bound ADP during relaxation of catch force by phosphorylation of twitchin at pCa > 8. The only effects of the catch link on myosin-bound ADP turnover are 1), a small, very slow extra turnover when catch force is maintained at very low [Ca+2] (pCa > 8); and 2), attenuation of the shortening-induced increase in turnover at subsaturating [Ca(+2)]. These limited interactions between the catch link and myosin cross-bridge turnover are consistent with the idea that catch force is maintained by a thick and thin filament linkage other than the myosin cross-bridge.

摘要

软体动物平滑肌中的捕获力几乎不需要能量输入(若需要也极少),并且由粗肌丝相关的微小肌联蛋白(肌动蛋白结合蛋白)的磷酸化状态控制。通过对结合肌球蛋白的ADP进行单周转测量,确定了通透化捕获肌肉中肌球蛋白横桥周转的动力学参数,以及捕获机制对这些参数的潜在影响。在等长条件下,横桥周转存在快速和慢速成分,这可能是由于结合钙和未结合钙的横桥池的动力学分离所致。在中等[Ca+2]浓度下负责维持捕获力的结构,在等长条件下不会改变导致快速和慢速成分的过程。此外,在pCa > 8时,通过肌动蛋白结合蛋白的磷酸化使捕获力松弛期间,结合肌球蛋白的ADP没有可测量的周转。捕获连接对结合肌球蛋白的ADP周转的唯一影响是:1)当捕获力在非常低的[Ca+2](pCa > 8)下维持时,有一个小的、非常缓慢的额外周转;2)在亚饱和[Ca(+2)]浓度下,缩短诱导的周转增加减弱。捕获连接与肌球蛋白横桥周转之间的这些有限相互作用与捕获力由肌球蛋白横桥以外的粗细肌丝连接维持的观点一致。

相似文献

1
Myosin cross-bridge kinetics and the mechanism of catch.
Biophys J. 2007 Jul 15;93(2):554-65. doi: 10.1529/biophysj.107.105577. Epub 2007 Apr 27.
2
The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle.
Biophys J. 2001 Jan;80(1):415-26. doi: 10.1016/S0006-3495(01)76024-9.
3
Twitchin as a regulator of catch contraction in molluscan smooth muscle.
J Muscle Res Cell Motil. 2005;26(6-8):455-60. doi: 10.1007/s10974-005-9029-2.
4
Catch force links and the low to high force transition of myosin.
Biophys J. 2006 May 1;90(9):3193-202. doi: 10.1529/biophysj.105.077453. Epub 2006 Feb 10.
5
Catch muscle of bivalve molluscs contains myosin- and twitchin-associated protein kinase phosphorylating myorod.
Biochim Biophys Acta. 2010 Apr;1804(4):884-90. doi: 10.1016/j.bbapap.2009.12.020. Epub 2010 Jan 13.
6
Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge.
J Muscle Res Cell Motil. 2008;29(2-5):73-99. doi: 10.1007/s10974-008-9149-6. Epub 2008 Nov 28.
8
Regulation of catch muscle by twitchin phosphorylation: effects on force, ATPase, and shortening.
Biophys J. 1998 Oct;75(4):1904-14. doi: 10.1016/S0006-3495(98)77631-3.
9
Mechanism of catch force: tethering of thick and thin filaments by twitchin.
J Biomed Biotechnol. 2010;2010:725207. doi: 10.1155/2010/725207. Epub 2010 Jun 23.

引用本文的文献

1
Catch muscle myorod modulates ATPase activity of Myosin in a phosphorylation-dependent way.
PLoS One. 2015 Apr 27;10(4):e0125379. doi: 10.1371/journal.pone.0125379. eCollection 2015.
2
A force-activated kinase in a catch smooth muscle.
J Muscle Res Cell Motil. 2011 Mar;31(5-6):349-58. doi: 10.1007/s10974-011-9240-2. Epub 2011 Feb 1.
3
The N-terminal region of twitchin binds thick and thin contractile filaments: redundant mechanisms of catch force maintenance.
J Biol Chem. 2010 Dec 24;285(52):40654-65. doi: 10.1074/jbc.M110.166041. Epub 2010 Oct 22.
4
Mechanism of catch force: tethering of thick and thin filaments by twitchin.
J Biomed Biotechnol. 2010;2010:725207. doi: 10.1155/2010/725207. Epub 2010 Jun 23.
5
Rhythmic contraction generates adjustable passive stiffness in rabbit detrusor.
J Appl Physiol (1985). 2010 Mar;108(3):544-53. doi: 10.1152/japplphysiol.01079.2009. Epub 2010 Jan 7.
6
siRNA-mediated knockdown of h-caldesmon in vascular smooth muscle.
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1930-9. doi: 10.1152/ajpheart.00129.2009. Epub 2009 Sep 18.
7
Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge.
J Muscle Res Cell Motil. 2008;29(2-5):73-99. doi: 10.1007/s10974-008-9149-6. Epub 2008 Nov 28.

本文引用的文献

4
The relation between the work performed and the energy liberated in muscular contraction.
J Physiol. 1924 May 23;58(6):373-95. doi: 10.1113/jphysiol.1924.sp002141.
5
Energy cost of tonic contraction in a lamellibranch catch muscle.
J Physiol. 1968 Sep;198(1):127-43. doi: 10.1113/jphysiol.1968.sp008597.
6
Catch force links and the low to high force transition of myosin.
Biophys J. 2006 May 1;90(9):3193-202. doi: 10.1529/biophysj.105.077453. Epub 2006 Feb 10.
9
Adenosine diphosphate and strain sensitivity in myosin motors.
Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1867-77. doi: 10.1098/rstb.2004.1560.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验