Suppr超能文献

通过肌动蛋白磷酸化对捕捉肌的调节:对力量、ATP 酶和缩短的影响。

Regulation of catch muscle by twitchin phosphorylation: effects on force, ATPase, and shortening.

作者信息

Butler T M, Mooers S U, Li C, Narayan S, Siegman M J

机构信息

Department of Physiology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.

出版信息

Biophys J. 1998 Oct;75(4):1904-14. doi: 10.1016/S0006-3495(98)77631-3.

Abstract

Recent experiments on permeabilized anterior byssus retractor muscle (ABRM) of Mytilus edulis have shown that phosphorylation of twitchin releases catch force at pCa > 8 and decreases force at suprabasal but submaximum [Ca2+]. Twitchin phosphorylation decreases force with no detectable change in ATPase activity, and thus increases the energy cost of force maintenance at subsaturating [Ca2+]. Similarly, twitchin phosphorylation causes no change in unloaded shortening velocity (Vo) at any [Ca2+], but when compared at equal submaximum forces, there is a higher Vo when twitchin is phosphorylated. During calcium activation, the force-maintaining structure controlled by twitchin phosphorylation adjusts to a 30% Lo release to maintain force at the shorter length. The data suggest that during both catch and calcium-mediated submaximum contractions, twitchin phosphorylation removes a structure that maintains force with a very low ATPase, but which can slowly cycle during submaximum calcium activation. A quantitative cross-bridge model of catch is presented that is based on modifications of the Hai and Murphy (1988. Am. J. Physiol. 254:C99-C106) latch bridge model for regulation of mammalian smooth muscle.

摘要

最近对紫贻贝可透性前足丝牵缩肌(ABRM)进行的实验表明,肌联蛋白磷酸化在pCa > 8时释放捕捉力,并在高于基础但低于最大[Ca2+]时降低力。肌联蛋白磷酸化降低力,而ATP酶活性无明显变化,因此在亚饱和[Ca2+]时增加了维持力的能量消耗。同样,肌联蛋白磷酸化在任何[Ca2+]下都不会改变无负荷缩短速度(Vo),但在相同的亚最大力下进行比较时,肌联蛋白磷酸化时的Vo更高。在钙激活过程中,由肌联蛋白磷酸化控制的力维持结构会调整到30% Lo释放,以在较短长度下维持力。数据表明,在捕捉和钙介导的亚最大收缩过程中,肌联蛋白磷酸化都会去除一种以极低ATP酶维持力的结构,但这种结构在亚最大钙激活过程中可以缓慢循环。本文提出了一种捕捉的定量横桥模型,该模型基于对Hai和Murphy(1988年。《美国生理学杂志》254:C99 - C106)用于调节哺乳动物平滑肌的闩锁桥模型的修改。

相似文献

1
Regulation of catch muscle by twitchin phosphorylation: effects on force, ATPase, and shortening.
Biophys J. 1998 Oct;75(4):1904-14. doi: 10.1016/S0006-3495(98)77631-3.
2
The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle.
Biophys J. 2001 Jan;80(1):415-26. doi: 10.1016/S0006-3495(01)76024-9.
5
Twitchin as a regulator of catch contraction in molluscan smooth muscle.
J Muscle Res Cell Motil. 2005;26(6-8):455-60. doi: 10.1007/s10974-005-9029-2.
7
A force-activated kinase in a catch smooth muscle.
J Muscle Res Cell Motil. 2011 Mar;31(5-6):349-58. doi: 10.1007/s10974-011-9240-2. Epub 2011 Feb 1.
8
Protein phosphatase 2B dephosphorylates twitchin, initiating the catch state of invertebrate smooth muscle.
J Biol Chem. 2004 Sep 24;279(39):40762-8. doi: 10.1074/jbc.M405191200. Epub 2004 Jul 21.
9
Myosin cross-bridge kinetics and the mechanism of catch.
Biophys J. 2007 Jul 15;93(2):554-65. doi: 10.1529/biophysj.107.105577. Epub 2007 Apr 27.
10
Catch force links and the low to high force transition of myosin.
Biophys J. 2006 May 1;90(9):3193-202. doi: 10.1529/biophysj.105.077453. Epub 2006 Feb 10.

引用本文的文献

1
Mechanism and Function of the Catch State in Molluscan Smooth Muscle: A Historical Perspective.
Int J Mol Sci. 2020 Oct 14;21(20):7576. doi: 10.3390/ijms21207576.
2
Calcium-dependent titin-thin filament interactions in muscle: observations and theory.
J Muscle Res Cell Motil. 2020 Mar;41(1):125-139. doi: 10.1007/s10974-019-09540-y. Epub 2019 Jul 9.
3
Basic science and clinical use of eccentric contractions: History and uncertainties.
J Sport Health Sci. 2018 Jul;7(3):265-274. doi: 10.1016/j.jshs.2018.06.002. Epub 2018 Jun 20.
4
Myosin Mg-ATPase of molluscan muscles is slightly activated by F-actin under catch state in vitro.
J Muscle Res Cell Motil. 2013 May;34(2):115-23. doi: 10.1007/s10974-013-9339-8. Epub 2013 Mar 28.
5
A force-activated kinase in a catch smooth muscle.
J Muscle Res Cell Motil. 2011 Mar;31(5-6):349-58. doi: 10.1007/s10974-011-9240-2. Epub 2011 Feb 1.
6
The N-terminal region of twitchin binds thick and thin contractile filaments: redundant mechanisms of catch force maintenance.
J Biol Chem. 2010 Dec 24;285(52):40654-65. doi: 10.1074/jbc.M110.166041. Epub 2010 Oct 22.
7
Mechanism of catch force: tethering of thick and thin filaments by twitchin.
J Biomed Biotechnol. 2010;2010:725207. doi: 10.1155/2010/725207. Epub 2010 Jun 23.
8
The highly efficient holding function of the mollusc 'catch' muscle is not based on decelerated myosin head cross-bridge cycles.
Proc Biol Sci. 2010 Mar 7;277(1682):803-8. doi: 10.1098/rspb.2009.1618. Epub 2009 Nov 11.
10
Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge.
J Muscle Res Cell Motil. 2008;29(2-5):73-99. doi: 10.1007/s10974-008-9149-6. Epub 2008 Nov 28.

本文引用的文献

1
Energy cost of tonic contraction in a lamellibranch catch muscle.
J Physiol. 1968 Sep;198(1):127-43. doi: 10.1113/jphysiol.1968.sp008597.
2
The nature of the phasic and the tonic responses of the anterior byssal retractor muscle of Mytilus.
J Physiol. 1959 Dec;149(1):154-77. doi: 10.1113/jphysiol.1959.sp006332.
3
STRUCTURE AND FUNCTION IN SMOOTH TONIC MUSCLES OF LAMELLIBRANCH MOLLUSCS.
Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:525-36. doi: 10.1098/rspb.1964.0068.
6
A nonisometric kinetic model for smooth muscle.
Am J Physiol. 1997 Mar;272(3 Pt 1):C1025-39. doi: 10.1152/ajpcell.1997.272.3.C1025.
7
Nucleotide binding by actomyosin as a determinant of relaxation kinetics of rabbit phasic and tonic smooth muscle.
J Physiol. 1996 May 1;492 ( Pt 3)(Pt 3):669-73. doi: 10.1113/jphysiol.1996.sp021336.
8
Calcium-dependent inhibition of in vitro thin-filament motility by native titin.
FEBS Lett. 1996 Feb 19;380(3):281-6. doi: 10.1016/0014-5793(96)00055-5.
10
The effect of genetically expressed cardiac titin fragments on in vitro actin motility.
Biophys J. 1995 Oct;69(4):1508-18. doi: 10.1016/S0006-3495(95)80021-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验