Shen F, Tay T E, Li J Z, Nigen S, Lee P V S, Chan H K
Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576.
J Biomech Eng. 2006 Oct;128(5):797-801. doi: 10.1115/1.2264393.
This paper proposes a modified nonlinear viscoelastic Bilston model (Bilston et al., 2001, Biorheol., 38, pp. 335-345). for the modeling of brain tissue constitutive properties. The modified model can be readily implemented in a commercial explicit finite element (FE) code, PamCrash. Critical parameters of the model have been determined through a series of rheological tests on porcine brain tissue samples and the time-temperature superposition (TTS) principle has been used to extend the frequency to a high region. Simulations by using PamCrash are compared with the test results. Through the use of the TTS principle, the mechanical and rheological behavior at high frequencies up to 10(4) rads may be obtained. This is important because the properties of the brain tissue at high frequencies and impact rates are especially relevant to studies of traumatic head injury. The averaged dynamic modulus ranges from 130 Pa to 1500 Pa and loss modulus ranges from 35 Pa to 800 Pa in the frequency regime studied (0.01 rads to 3700 rads). The errors between theoretical predictions and averaged relaxation test results are within 20% for strains up to 20%. The FEM simulation results are in good agreement with experimental results. The proposed model will be especially useful for application to FE analysis of the head under impact loads. More realistic analysis of head injury can be carried out by incorporating the nonlinear viscoelastic constitutive law for brain tissue into a commercial FE code.
本文提出了一种改进的非线性粘弹性比尔斯顿模型(比尔斯顿等人,2001年,《生物流变学》,第38卷,第335 - 345页),用于对脑组织本构特性进行建模。该改进模型可轻松在商业显式有限元(FE)代码PamCrash中实现。通过对猪脑组织样本进行一系列流变学测试确定了模型的关键参数,并利用时间 - 温度叠加(TTS)原理将频率扩展到高频区域。将使用PamCrash进行的模拟与测试结果进行了比较。通过使用TTS原理,可以获得高达10⁴弧度的高频下的力学和流变行为。这很重要,因为高频和冲击速率下的脑组织特性与创伤性脑损伤研究特别相关。在所研究的频率范围(0.01弧度至3700弧度)内,平均动态模量范围为130帕斯卡至1500帕斯卡,损耗模量范围为35帕斯卡至800帕斯卡。对于高达20%的应变,理论预测与平均松弛测试结果之间的误差在20%以内。有限元模拟结果与实验结果吻合良好。所提出的模型对于应用于冲击载荷下头部的有限元分析将特别有用。通过将脑组织的非线性粘弹性本构定律纳入商业有限元代码,可以对头部损伤进行更实际的分析。