Suppr超能文献

使用模糊逻辑从高分辨率磁共振图像中表征小梁骨结构

Characterization of trabecular bone structure from high-resolution magnetic resonance images using fuzzy logic.

作者信息

Carballido-Gamio Julio, Phan Catherine, Link Thomas M, Majumdar Sharmila

机构信息

MQIR, Department of Radiology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Magn Reson Imaging. 2006 Oct;24(8):1023-9. doi: 10.1016/j.mri.2006.04.010. Epub 2006 May 30.

Abstract

The purpose of this work was to apply fuzzy logic image processing techniques to characterize the trabecular bone structure with high-resolution magnetic resonance images. Fifteen ex vivo high-resolution magnetic resonance images of specimens of human radii at 1.5 T and 12 in vivo high-resolution magnetic resonance images of the calcanei of peri- and postmenopausal women at 3 T were obtained. Soft segmentation using fuzzy clustering was applied to MR data to obtain fuzzy bone volume fraction maps, which were then analyzed with three-dimensional (3D) fuzzy geometrical parameters and measures of fuzziness. Geometrical parameters included fuzzy perimeter and fuzzy compactness, while measures of fuzziness included linear index of fuzziness, quadratic index of fuzziness, logarithmic fuzzy entropy, and exponential fuzzy entropy. Fuzzy parameters were validated at 1.5 T with 3D structural parameters computed from microcomputed tomography images, which allow the observation of true trabecular bone structure and with apparent MR structural indexes at 1.5 T and 3 T. The validation was statistically performed with the Pearson correlation coefficient as well as with the Bland-Altman method. Bone volume fraction correlation values (r) were up to .99 (P<.001) with good agreements based on Bland-Altman analysis showing that fuzzy clustering is a valid technique to quantify this parameter. Measures of fuzziness also showed consistent correlations to trabecular number parameters (r>.85; P<.001) and good agreements based on Bland-Altman analysis, suggesting that the level of fuzziness in high-resolution magnetic resonance images could be related to the trabecular bone structure.

摘要

这项工作的目的是应用模糊逻辑图像处理技术,通过高分辨率磁共振成像来表征小梁骨结构。获取了15张1.5T下人体桡骨标本的离体高分辨率磁共振图像,以及12张3T下绝经前后女性跟骨的活体高分辨率磁共振图像。将基于模糊聚类的软分割应用于磁共振数据,以获得模糊骨体积分数图,然后用三维(3D)模糊几何参数和模糊度测量值对其进行分析。几何参数包括模糊周长和模糊紧密度,而模糊度测量值包括线性模糊指数、二次模糊指数、对数模糊熵和指数模糊熵。在1.5T下,利用从显微计算机断层扫描图像计算得到的3D结构参数以及1.5T和3T下的表观磁共振结构指数对模糊参数进行验证。使用Pearson相关系数以及Bland-Altman方法进行统计学验证。基于Bland-Altman分析,骨体积分数相关值(r)高达0.99(P<0.001),一致性良好,表明模糊聚类是量化该参数的有效技术。模糊度测量值与小梁数量参数也显示出一致的相关性(r>0.85;P<0.001),基于Bland-Altman分析一致性良好,这表明高分辨率磁共振图像中的模糊度水平可能与小梁骨结构有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验