Suppr超能文献

用于评估骨质疏松症的高分辨率成像技术。

High-resolution imaging techniques for the assessment of osteoporosis.

作者信息

Krug Roland, Burghardt Andrew J, Majumdar Sharmila, Link Thomas M

机构信息

MQIR, Department of Radiology and Biomedical Imaging, University of California-San Francisco, UCSF China Basin Landing, 185 Berry Street, San Francisco, CA 94107, USA.

出版信息

Radiol Clin North Am. 2010 May;48(3):601-21. doi: 10.1016/j.rcl.2010.02.015.

Abstract

The importance of assessing the bone's microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in several publications. The high spatial resolution required to resolve the bone's microstructure in a clinically feasible scan time is challenging. At present, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition, multidetector computed tomography has been used for high-resolution imaging of trabecular bone structure; however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements, and recent developments in this emerging field. Details regarding imaging protocols as well as image postprocessing methods for bone structure quantification are discussed.

摘要

在骨质疏松症的背景下,除了评估骨矿物质密度外,评估骨骼的微观结构组成的重要性已在多篇出版物中得到强调。要在临床可行的扫描时间内解析骨骼的微观结构所需的高空间分辨率具有挑战性。目前,在体内满足这些要求的最适合的方式是高分辨率外周定量成像(HR-pQCT)和磁共振成像(MRI)。虽然HR-pQCT仅限于手腕和脚踝等外周骨骼区域,但MRI也可以对其他部位成像,如股骨近端,但通常空间分辨率较低。此外,多探测器计算机断层扫描已用于小梁骨结构的高分辨率成像;然而,辐射剂量是一个限制因素。本文概述了该新兴领域的不同方式、技术要求和最新进展。讨论了有关成像协议以及骨结构定量的图像后处理方法的详细信息。

相似文献

1
High-resolution imaging techniques for the assessment of osteoporosis.
Radiol Clin North Am. 2010 May;48(3):601-21. doi: 10.1016/j.rcl.2010.02.015.
2
Noninvasive assessment of bone density and structure using computed tomography and magnetic resonance.
Bone. 1998 May;22(5 Suppl):149S-153S. doi: 10.1016/s8756-3282(98)00005-2.
7
High-resolution computed tomography for clinical imaging of bone microarchitecture.
Clin Orthop Relat Res. 2011 Aug;469(8):2179-93. doi: 10.1007/s11999-010-1766-x.
8
Advanced imaging assessment of bone fragility in glucocorticoid-induced osteoporosis.
Bone. 2011 Jun 1;48(6):1221-31. doi: 10.1016/j.bone.2011.02.005. Epub 2011 Feb 20.
10
Noninvasive imaging of bone microarchitecture.
Ann N Y Acad Sci. 2011 Dec;1240:77-87. doi: 10.1111/j.1749-6632.2011.06282.x.

引用本文的文献

2
Strategies for the Patient-Specific Implant Angle of Bone Scaffolds Using Optimization.
Tissue Eng Regen Med. 2025 Jun 13. doi: 10.1007/s13770-025-00730-z.
7
8
Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients.
Eur Spine J. 2024 Aug;33(8):3242-3260. doi: 10.1007/s00586-024-08235-4. Epub 2024 Jul 2.
10
Deep learning-based harmonization of trabecular bone microstructures between high- and low-resolution CT imaging.
Med Phys. 2024 Jun;51(6):4258-4270. doi: 10.1002/mp.17003. Epub 2024 Feb 28.

本文引用的文献

1
3
In vivo evaluation of the presence of bone marrow in cortical porosity in postmenopausal osteopenic women.
Ann Biomed Eng. 2010 Feb;38(2):235-46. doi: 10.1007/s10439-009-9850-7. Epub 2009 Dec 2.
9
Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T.
Invest Radiol. 2009 Sep;44(9):613-8. doi: 10.1097/RLI.0b013e3181b4c055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验