Suppr超能文献

基于局部骨增强的模糊聚类分割磁共振小梁骨图像。

Local bone enhancement fuzzy clustering for segmentation of MR trabecular bone images.

机构信息

Department of Radiology and Biomedical Imaging, Musculoskeletal and Quantitative Imaging Research Group (MQIR), University of California, San Francisco, California 94158, USA.

出版信息

Med Phys. 2010 Jan;37(1):295-302. doi: 10.1118/1.3264615.

Abstract

PURPOSE

Segmentation of trabecular bone from magnetic resonance (MR) images is a challenging task due to spatial resolution limitations, signal-to-noise ratio constraints, and signal intensity inhomogeneities. This article examines an alternative approach to trabecular bone segmentation using partial membership segmentation termed fuzzy C-means clustering incorporating local second order features for bone enhancement (BE-FCM) at multiple scales. This approach is meant to allow for a soft segmentation that accounts for partial volume effects while suppressing the influence of noise.

METHODS

A soft segmentation method was developed and evaluated on three different sets of data; interscan reproducibility was evaluated on six test-retest in vivo MR scans of the proximal femur, correlation between MR and HR-pQCT measurements was evaluated on 49 in vivo scans from the distal tibia, and the potential for fracture discrimination was evaluated using MR scans of calcaneus specimens from 15 participants with and 15 participants without vertebral fracture. The algorithm was compared to fuzzy clustering using the intensity as the only feature (I-FCM) and a dual thresholding algorithm. The metric evaluated was bone volume over total volume (BV/TV) within user-defined regions of interest.

RESULTS

BE-FCM had a higher interscan reproducibility (rms CV: 2.0%) compared to I-FCM (5.6%) and thresholding (4.2%), and expressed higher correlation to HR-pQCT data (r = 0.79, p < 10(-11)) compared to I-FCM (r = 0.74, p < 10(-8)) and thresholding (r = 0.70, p < 10(-6)). BE-FCM was also the method that was best able to differentiate between a control and a vertebral fracture group at a 95% significance level.

CONCLUSIONS

The results suggest that trabecular bone segmentation by BE-FCM can provide a precise BV/TV measurement that is sensitive to pathology. The segmentation method may become useful in MR imaging-based quantification of bone microarchitecture.

摘要

目的

由于空间分辨率限制、信噪比约束以及信号强度不均匀性,从磁共振(MR)图像中分割出小梁骨是一项具有挑战性的任务。本文研究了一种替代方法,即使用部分隶属度分割,称为模糊 C-均值聚类,结合局部二阶特征进行骨增强(BE-FCM),以实现多尺度的小梁骨分割。这种方法旨在实现软分割,以考虑部分容积效应,同时抑制噪声的影响。

方法

开发了一种软分割方法,并在三组不同的数据上进行了评估;在六次对活体股骨近端的扫描中评估了扫描间的可重复性,在 49 次对活体胫骨远端的扫描中评估了与 HR-pQCT 测量的相关性,在 15 名有和 15 名无椎体骨折的参与者的跟骨标本的 MR 扫描中评估了骨折鉴别能力。将该算法与仅使用强度作为唯一特征的模糊聚类(I-FCM)和双阈值算法进行了比较。评估的指标是用户定义的感兴趣区域内的骨体积与总体积(BV/TV)之比。

结果

BE-FCM 的扫描间可重复性更高(均方根 CV:2.0%),优于 I-FCM(5.6%)和阈值(4.2%),与 HR-pQCT 数据的相关性也更高(r = 0.79,p < 10(-11)),优于 I-FCM(r = 0.74,p < 10(-8))和阈值(r = 0.70,p < 10(-6))。BE-FCM 也是能够以 95%的显著水平区分对照组和椎体骨折组的最佳方法。

结论

结果表明,BE-FCM 对小梁骨的分割可以提供对病理敏感的精确 BV/TV 测量。该分割方法可能成为基于磁共振成像的骨微观结构定量分析的有用方法。

相似文献

1
3
Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women.
Bone. 2011 Mar 1;48(3):611-21. doi: 10.1016/j.bone.2010.10.179. Epub 2010 Nov 5.
4
Improved Fuzzy C-Means based Particle Swarm Optimization (PSO) initialization and outlier rejection with level set methods for MR brain image segmentation.
Comput Methods Programs Biomed. 2015 Nov;122(2):266-81. doi: 10.1016/j.cmpb.2015.08.001. Epub 2015 Aug 10.
5
Generalized fuzzy clustering for segmentation of multi-spectral magnetic resonance images.
Comput Med Imaging Graph. 2008 Jul;32(5):353-66. doi: 10.1016/j.compmedimag.2008.02.002. Epub 2008 Apr 2.
6
A fast and automatic segmentation method of MR brain images based on genetic fuzzy clustering algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5628-33. doi: 10.1109/IEMBS.2007.4353623.
9
A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image.
Comput Med Imaging Graph. 2011 Jul;35(5):383-97. doi: 10.1016/j.compmedimag.2010.12.001. Epub 2011 Jan 22.
10
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.

引用本文的文献

1
Automatic Bone Segmentation from MRI for Real-Time Knee Tracking in Fluoroscopic Imaging.
Diagnostics (Basel). 2022 Sep 15;12(9):2228. doi: 10.3390/diagnostics12092228.
3
Adaptation of the proximal humerus to physical activity: A within-subject controlled study in baseball players.
Bone. 2019 Apr;121:107-115. doi: 10.1016/j.bone.2019.01.008. Epub 2019 Jan 8.
6
A trimodality comparison of volumetric bone imaging technologies. Part I: Short-term precision and validity.
J Clin Densitom. 2015 Jan-Mar;18(1):124-35. doi: 10.1016/j.jocd.2014.07.005. Epub 2014 Aug 13.
9
MRI of trabecular bone using a decay due to diffusion in the internal field contrast imaging sequence.
J Magn Reson Imaging. 2011 Aug;34(2):361-71. doi: 10.1002/jmri.22612.
10
Generation of an atlas of the proximal femur and its application to trabecular bone analysis.
Magn Reson Med. 2011 Oct;66(4):1181-91. doi: 10.1002/mrm.22885. Epub 2011 Mar 22.

本文引用的文献

3
A modified fuzzy C-means classification method using a multiscale diffusion filtering scheme.
Med Image Anal. 2009 Apr;13(2):193-202. doi: 10.1016/j.media.2008.06.014. Epub 2008 Jul 5.
6
Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging.
J Magn Reson Imaging. 2007 Feb;25(2):390-409. doi: 10.1002/jmri.20807.
7
Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla.
Magn Reson Med. 2006 Nov;56(5):1075-84. doi: 10.1002/mrm.21059.
8
Characterization of trabecular bone structure from high-resolution magnetic resonance images using fuzzy logic.
Magn Reson Imaging. 2006 Oct;24(8):1023-9. doi: 10.1016/j.mri.2006.04.010. Epub 2006 May 30.
9
Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):9-16. doi: 10.1007/11566465_2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验