Suppr超能文献

通过Red/ET重组和在黄色粘球菌中的异源表达来重建粘噻唑生物合成基因簇。

Reconstitution of the myxothiazol biosynthetic gene cluster by Red/ET recombination and heterologous expression in Myxococcus xanthus.

作者信息

Perlova Olena, Fu Jun, Kuhlmann Silvia, Krug Daniel, Stewart A Francis, Zhang Youming, Müller Rolf

机构信息

Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany.

出版信息

Appl Environ Microbiol. 2006 Dec;72(12):7485-94. doi: 10.1128/AEM.01503-06. Epub 2006 Sep 22.

Abstract

Although many secondary metabolites exhibiting important pharmaceutical and agrochemical activities have been isolated from myxobacteria, most of these microorganisms remain difficult to handle genetically. To utilize their metabolic potential, heterologous expression methodologies are currently being developed. Here, the Red/ET recombination technology was used to perform all required gene cluster engineering steps in Escherichia coli prior to the transfer into the chromosome of the heterologous host. We describe the integration of the complete 57-kbp myxothiazol biosynthetic gene cluster reconstituted from two cosmids from a cosmid library of the myxobacterium Stigmatella aurantiaca DW4-3/1 into the chromosome of the thus far best-characterized myxobacterium, Myxococcus xanthus, in one step. The successful integration and expression of the myxothiazol biosynthetic genes in M. xanthus results in the production of myxothiazol in yields comparable to the natural producer strain.

摘要

尽管已经从粘细菌中分离出了许多具有重要医药和农用化学活性的次生代谢产物,但这些微生物中的大多数在基因操作上仍然很困难。为了利用它们的代谢潜力,目前正在开发异源表达方法。在这里,Red/ET重组技术被用于在将基因簇转移到异源宿主染色体之前,在大肠杆菌中完成所有所需的基因簇工程步骤。我们描述了将来自橙色粘球菌Stigmatella aurantiaca DW4-3/1的粘粒文库中的两个粘粒重构的完整57-kbp粘噻唑生物合成基因簇一步整合到迄今为止特征最明确的粘细菌——黄色粘球菌的染色体中。粘噻唑生物合成基因在黄色粘球菌中的成功整合和表达导致了粘噻唑的产生,其产量与天然生产菌株相当。

相似文献

1
Reconstitution of the myxothiazol biosynthetic gene cluster by Red/ET recombination and heterologous expression in Myxococcus xanthus.
Appl Environ Microbiol. 2006 Dec;72(12):7485-94. doi: 10.1128/AEM.01503-06. Epub 2006 Sep 22.
3
Engineering Pseudochelin Production in Myxococcus xanthus.
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01789-18. Print 2018 Nov 15.
4
Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus.
Antimicrob Agents Chemother. 2002 Sep;46(9):2772-8. doi: 10.1128/AAC.46.9.2772-2778.2002.
8
A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria.
J Biol Chem. 2002 Sep 6;277(36):32768-74. doi: 10.1074/jbc.M205222200. Epub 2002 Jun 25.
10
Heterologous expression of the oxytetracycline biosynthetic pathway in Myxococcus xanthus.
Appl Environ Microbiol. 2010 Apr;76(8):2681-3. doi: 10.1128/AEM.02841-09. Epub 2010 Mar 5.

引用本文的文献

1
Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism.
Eng Microbiol. 2023 Jan 20;3(2):100075. doi: 10.1016/j.engmic.2023.100075. eCollection 2023 Jun.
2
Functional Studies and Revision of the NFAT-133/TM-123 Biosynthetic Pathway in .
ACS Chem Biol. 2022 Aug 19;17(8):2039-2045. doi: 10.1021/acschembio.2c00454. Epub 2022 Jul 29.
3
Biotechnological production optimization of argyrins - a potent immunomodulatory natural product class.
Microb Biotechnol. 2022 Jan;15(1):353-369. doi: 10.1111/1751-7915.13959. Epub 2021 Nov 1.
4
Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study.
Pharmaceutics. 2021 Aug 16;13(8):1265. doi: 10.3390/pharmaceutics13081265.
5
Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens.
J Ind Microbiol Biotechnol. 2021 Aug 24;48(7-8). doi: 10.1093/jimb/kuab045.
6
Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans.
Nat Chem Biol. 2021 May;17(5):576-584. doi: 10.1038/s41589-021-00745-2. Epub 2021 Mar 4.
9
Genetic platforms for heterologous expression of microbial natural products.
Nat Prod Rep. 2019 Sep 1;36(9):1313-1332. doi: 10.1039/c9np00025a. Epub 2019 Jun 14.
10
Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts.
Medchemcomm. 2019 Apr 25;10(5):668-681. doi: 10.1039/c9md00055k. eCollection 2019 May 1.

本文引用的文献

3
A unique mechanism for methyl ester formation via an amide intermediate found in myxobacteria.
Chembiochem. 2006 Aug;7(8):1197-205. doi: 10.1002/cbic.200600057.
4
Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus.
Proc Natl Acad Sci U S A. 1977 Jul;74(7):2938-42. doi: 10.1073/pnas.74.7.2938.
5
Analysis of myxobacterial secondary metabolism goes molecular.
J Ind Microbiol Biotechnol. 2006 Jul;33(7):577-88. doi: 10.1007/s10295-006-0082-7. Epub 2006 Feb 21.
7
The impact of bacterial genomics on natural product research.
Angew Chem Int Ed Engl. 2005 Oct 28;44(42):6828-46. doi: 10.1002/anie.200501080.
8
Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways.
Curr Opin Biotechnol. 2005 Dec;16(6):594-606. doi: 10.1016/j.copbio.2005.10.001. Epub 2005 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验