Suppr超能文献

用于关联尖峰序列和 LFP 动力学与神经信息处理的参数模型。

Parametric models to relate spike train and LFP dynamics with neural information processing.

机构信息

Center for Neural Science, New York University New York, NY, USA.

出版信息

Front Comput Neurosci. 2012 Jul 24;6:51. doi: 10.3389/fncom.2012.00051. eCollection 2012.

Abstract

Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial-by-trial behavioral performance than existing models of neural information processing. Our results highlight the utility of the unified modeling framework for characterizing spike-LFP recordings obtained during behavioral performance.

摘要

源自细胞外电流的尖峰脉冲和局部场电位 (LFPs) 为神经信息处理提供了基础。从同时的尖峰-场记录中理解神经编码,并随后对信息处理事件进行解码,将具有广泛的应用。一种展示对神经编码理解的方法,对于应用的发展具有特殊优势,是对神经活动及其协变量进行参数统计建模。在这里,我们提出了一组参数尖峰-场模型(统一模型),可以与现有的解码算法一起使用,以揭示任务或刺激特异性处理的时间。我们提出的统一建模框架捕捉到了信息处理的两个重要特征的影响:时变的刺激驱动输入和即使在没有环境输入的情况下也会发生的持续背景活动。我们已经将该框架应用于解码从清醒、行为猴子的外侧顶内区 (LIP) 获得的模拟和实验记录的尖峰-场会话中的神经潜伏期,这些猴子执行提示性的看-伸手运动以到达空间目标。使用模拟和实验数据,我们发现逐次试验参数的估计值不受持续背景活动的存在显著影响。然而,在统一模型中包含背景活动可以提高预测单个尖峰事件的拟合度。揭示模型参数与运动时间之间的关系为测试关于神经活动与行为之间关系的假设提供了新的方法。我们使用以前发表的数据集中的单个试验获得了显著的尖峰-场起始时间相关性,在该数据集中,仅通过试验平均才能获得显著的强相关性。我们还发现,与现有的神经信息处理模型相比,统一模型从神经反应潜伏期和逐次试验行为表现之间提取出更强的关系。我们的结果强调了统一建模框架在对行为表现期间获得的尖峰-LFP 记录进行特征描述的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5240/3403111/566f99032bac/fncom-06-00051-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验