Suppr超能文献

使用贝叶斯分箱法对尖峰序列进行建模并提取反应潜伏期。

Modelling spike trains and extracting response latency with Bayesian binning.

作者信息

Endres Dominik, Schindelin Johannes, Földiák Peter, Oram Mike W

机构信息

Section for Theoretical Sensomotorics, Department of Cognitive Neurology, University Clinic Tübingen and Hertie Institute for Clinical Brain Science and Center for Integrative Neuroscience, Frondsbergstrasse 23, Tübingen, Germany.

出版信息

J Physiol Paris. 2010 May-Sep;104(3-4):128-36. doi: 10.1016/j.jphysparis.2009.11.015. Epub 2009 Nov 27.

Abstract

The peristimulus time histogram (PSTH) and the spike density function (SDF) are commonly used in the analysis of neurophysiological data. The PSTH is usually obtained by binning spike trains, the SDF being a (Gaussian) kernel smoothed version of the PSTH. While selection of the bin width or kernel size is often relatively arbitrary there have been recent attempts to remedy this situation (Shimazaki and Shinomoto, 2007c,b,a). We further develop an exact Bayesian generative model approach to estimating PSTHs (Endres et al., 2008) and demonstrate its superiority to competing methods using data from early (LGN) and late (STSa) visual areas. We also highlight the advantages of our scheme's automatic complexity control and generation of error bars. Additionally, our approach allows extraction of excitatory and inhibitory response latency from spike trains in a principled way, both on repeated and single trial data. We show that the method can be applied to data with high background firing rates and inhibitory responses (LGN) as well as to data with low firing rate and excitatory responses (STSa). Furthermore, we demonstrate on simulated data that our latency extraction method works for a range of signal-to-noise ratios and background firing rates. While further studies are needed to examine the sensitivity of our method to, for example, gradual changes in firing rate and adaptation, the current results suggest that Bayesian binning is a powerful method for the estimation of firing rate and the extraction response latency from neuronal spike trains.

摘要

刺激时间直方图(PSTH)和脉冲密度函数(SDF)常用于神经生理学数据分析。PSTH通常通过对脉冲序列进行分箱获得,SDF是PSTH的(高斯)核平滑版本。虽然分箱宽度或核大小的选择通常比较随意,但最近已有尝试来改善这种情况(岛崎和筱本,2007c、b、a)。我们进一步开发了一种精确的贝叶斯生成模型方法来估计PSTH(恩德斯等人,2008),并使用来自早期(外侧膝状体)和晚期(颞上沟前部)视觉区域的数据证明了其相对于其他竞争方法的优越性。我们还强调了我们方案自动复杂度控制和生成误差线的优点。此外,我们的方法允许以一种有原则的方式从脉冲序列中提取兴奋性和抑制性反应潜伏期,无论是对重复试验数据还是单次试验数据。我们表明该方法可应用于具有高背景放电率和抑制性反应的数据(外侧膝状体)以及具有低放电率和兴奋性反应的数据(颞上沟前部)。此外,我们在模拟数据上证明了我们的潜伏期提取方法适用于一系列信噪比和背景放电率。虽然还需要进一步研究来检验我们的方法对例如放电率逐渐变化和适应性的敏感性,但目前的结果表明贝叶斯分箱是一种用于估计放电率和从神经元脉冲序列中提取反应潜伏期的强大方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验