Kumaran Sangaralingam, Kozlov Alexander G, Lohman Timothy M
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
Biochemistry. 2006 Oct 3;45(39):11958-73. doi: 10.1021/bi060994r.
We have examined the single-stranded DNA (ssDNA) binding properties of the Saccharomyces cerevisiae replication protein A (scRPA) using fluorescence titrations, isothermal titration calorimetry, and sedimentation equilibrium to determine whether scRPA can bind to ssDNA in multiple binding modes. We measured the occluded site size for scRPA binding poly(dT), as well as the stoichiometry, equilibrium binding constants, and binding enthalpy of scRPA-(dT)L complexes as a function of the oligodeoxynucleotide length, L. Sedimentation equilibrium studies show that scRPA is a stable heterotrimer over the range of [NaCl] examined (0.02-1.5 M). However, the occluded site size, n, undergoes a salt-dependent transition between values of n = 18-20 nucleotides at low [NaCl] and values of n = 26-28 nucleotides at high [NaCl], with a transition midpoint near 0.36 M NaCl (25.0 degrees C, pH 8.1). Measurements of the stoichiometry of scRPA-(dT)L complexes also show a [NaCl]-dependent change in stoichiometry consistent with the observed change in the occluded site size. Measurements of the deltaH(obsd) for scRPA binding to (dT)L at 1.5 M NaCl yield a contact site size of 28 nucleotides, similar to the occluded site size determined at this [NaCl]. Altogether, these data support a model in which scRPA can bind to ssDNA in at least two binding modes, a low site size mode (n = 18 +/- 1 nucleotides), stabilized at low [NaCl], in which only three of its oligonucleotide/oligosaccharide binding folds (OB-folds) are used, and a higher site size mode (n = 27 +/- 1 nucleotides), stabilized at higher [NaCl], which uses four of its OB-folds. No evidence for highly cooperative binding of scRPA to ssDNA was found under any conditions examined. Thus, scRPA shows some behavior similar to that of the E. coli SSB homotetramer, which also shows binding mode transitions, but some significant differences also exist.
我们使用荧光滴定、等温滴定量热法和沉降平衡法研究了酿酒酵母复制蛋白A(scRPA)的单链DNA(ssDNA)结合特性,以确定scRPA是否能以多种结合模式与ssDNA结合。我们测量了scRPA结合聚(dT)时的封闭位点大小,以及scRPA-(dT)L复合物的化学计量、平衡结合常数和结合焓随寡脱氧核苷酸长度L的变化。沉降平衡研究表明,在所研究的[NaCl]范围内(0.02 - 1.5 M),scRPA是一种稳定的异源三聚体。然而,封闭位点大小n在低[NaCl]时为n = 18 - 20个核苷酸,在高[NaCl]时为n = 26 - 28个核苷酸之间经历盐依赖性转变,转变中点接近0.36 M NaCl(25.0℃,pH 8.1)。scRPA-(dT)L复合物化学计量的测量也显示化学计量存在[NaCl]依赖性变化,与观察到的封闭位点大小变化一致。在1.5 M NaCl下测量scRPA与(dT)L结合的ΔH(obsd),得到接触位点大小为28个核苷酸,类似于在此[NaCl]下确定的封闭位点大小。总之,这些数据支持一个模型,其中scRPA可以至少以两种结合模式与ssDNA结合,一种是低位点大小模式(n = 18 ± 1个核苷酸),在低[NaCl]时稳定,其中仅使用其三个寡核苷酸/寡糖结合折叠(OB折叠),另一种是较高位点大小模式(n = 27 ± 1个核苷酸),在较高[NaCl]时稳定,使用其四个OB折叠。在任何研究条件下均未发现scRPA与ssDNA高度协同结合的证据。因此,scRPA表现出一些与大肠杆菌SSB同四聚体相似的行为,后者也表现出结合模式转变,但也存在一些显著差异。