Suppr超能文献

通过计算机模拟研究肽基甘氨酸α-羟化单加氧酶的催化机制。

The catalytic mechanism of peptidylglycine alpha-hydroxylating monooxygenase investigated by computer simulation.

作者信息

Crespo Alejandro, Martí Marcelo A, Roitberg Adrian E, Amzel L Mario, Estrin Darío A

机构信息

Departamento de Química Inorganica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina.

出版信息

J Am Chem Soc. 2006 Oct 4;128(39):12817-28. doi: 10.1021/ja062876x.

Abstract

The molecular basis of the hydroxylation reaction of the Calpha of a C-terminal glycine catalyzed by peptidylglycine alpha-hydroxylating monooxygenase (PHM) was investigated using hybrid quantum-classical (QM-MM) computational techniques. We have identified the most reactive oxygenated species and presented new insights into the hydrogen abstraction (H-abstraction) mechanism operative in PHM. Our results suggest that O(2) binds to Cu(B) to generate Cu(B)(II)-O(2)(.-) followed by electron transfer (ET) from Cu(A) to form Cu(B)(I)-O(2)(.-). The computed potential energy profiles for the H-abstraction reaction for Cu(B)(II)-O(2)(.-), Cu(B)(I)-O(2)(.-), and Cu(B)(II)-OOH species indicate that none of these species can be responsible for abstraction. However, the latter species can spontaneously form Cu(B)O (which consists of a two-unpaired-electrons Cu(B)O moiety ferromagnetically coupled with a radical cation located over the three Cu(B) ligands, in the quartet spin ground state) by abstracting a proton from the surrounding solvent. Both this monooxygenated species and the one obtained by reduction with ascorbate, Cu(B)O, were found to be capable of carrying out the H-abstraction; however, whereas the former abstracts the hydrogen atom concertedly with almost no activation energy, the later forms an intermediate that continues the reaction by a rebinding step. We propose that the active species in H-abstraction in PHM is probably Cu(B)O because it is formed exothermically and can concertedly abstract the substrate HA atom with the lower overall activation energy. Interestingly, this species resembles the active oxidant in cytochrome P450 enzymes, Compound I, suggesting that both PHM and cytochrome P450 enzymes may carry out substrate hydroxylation by using a similar mechanism.

摘要

利用量子经典混合(QM-MM)计算技术,研究了肽基甘氨酸α-羟化单加氧酶(PHM)催化的C末端甘氨酸α碳羟化反应的分子基础。我们确定了反应活性最高的氧化态物种,并对PHM中起作用的氢提取(H-提取)机制提出了新的见解。我们的结果表明,O(2)与Cu(B)结合生成Cu(B)(II)-O(2)(.-),随后发生电子转移(ET),从Cu(A)转移形成Cu(B)(I)-O(2)(.-)。计算得到的Cu(B)(II)-O(2)(.-)、Cu(B)(I)-O(2)(.-)和Cu(B)(II)-OOH物种的H-提取反应势能剖面图表明,这些物种都不能负责氢提取。然而,后一种物种可以通过从周围溶剂中提取一个质子自发形成Cu(B)O(它由一个双未配对电子Cu(B)O部分与位于三个Cu(B)配体上的自由基阳离子铁磁耦合,处于四重态自旋基态)。发现这种单氧化物种和通过抗坏血酸还原得到的物种Cu(B)O都能够进行H-提取;然而,前者几乎没有活化能协同提取氢原子,而后者形成一个中间体,通过重新结合步骤继续反应。我们提出,PHM中H-提取的活性物种可能是Cu(B)O,因为它是放热形成的,并且可以以较低的总活化能协同提取底物HA原子。有趣的是,这种物种类似于细胞色素P450酶中的活性氧化剂化合物I,这表明PHM和细胞色素P450酶可能通过类似的机制进行底物羟化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验