Chen Peng, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2004 Apr 21;126(15):4991-5000. doi: 10.1021/ja031564g.
Reaction thermodynamics and potential energy surfaces are calculated using density functional methods to investigate possible reactive Cu/O(2) species for H-atom abstraction in peptidylglycine alpha-hydroxylating monooxygenase (PHM), which has a noncoupled binuclear Cu active site. Two possible mononuclear Cu/O(2) species have been evaluated, the 2-electron reduced Cu(II)(M)-OOH intermediate and the 1-electron reduced side-on Cu(II)(M)-superoxo intermediate, which could form with comparable thermodynamics at the catalytic Cu(M) site. The substrate H-atom abstraction reaction by the Cu(II)(M)-OOH intermediate is found to be thermodynamically accessible due to the contribution of the methionine ligand, but with a high activation barrier ( approximately 37 kcal/mol, at a 3.0-A active site/substrate distance), arguing against the Cu(II)(M)-OOH species as the reactive Cu/O(2) intermediate in PHM. In contrast, H-atom abstraction from substrate by the side-on Cu(II)(M)-superoxo intermediate is a nearly isoenergetic process with a low reaction barrier at a comparable active site/substrate distance ( approximately 14 kcal/mol), suggesting that side-on Cu(II)(M)-superoxo is the reactive species in PHM. The differential reactivities of the Cu(II)(M)-OOH and Cu(II)(M)-superoxo species correlate to their different frontier molecular orbitals involved in the H-atom abstraction reaction. After the H-atom abstraction, a reasonable pathway for substrate hydroxylation involves a "water-assisted" direct OH transfer to the substrate radical, which generates a high-energy Cu(II)(M)-oxyl species. This provides the necessary driving force for intramolecular electron transfer from the Cu(H) site to complete the reaction in PHM. The differential reactivity pattern between the Cu(II)(M)-OOH and Cu(II)(M)-superoxo intermediates provides insight into the role of the noncoupled nature of PHM and dopamine beta-monooxygenase active sites, as compared to the coupled binuclear Cu active sites in hemocyanin, tyrosinase, and catechol oxidase, in O(2) activation.
采用密度泛函方法计算反应热力学和势能面,以研究肽基甘氨酸α-羟化单加氧酶(PHM)中可能用于氢原子提取的活性铜/氧(2)物种,该酶具有非偶联双核铜活性位点。评估了两种可能的单核铜/氧(2)物种,即2电子还原的Cu(II)(M)-OOH中间体和1电子还原的侧接Cu(II)(M)-超氧中间体,它们在催化铜(M)位点形成时具有相当的热力学性质。发现由于甲硫氨酸配体的作用,Cu(II)(M)-OOH中间体的底物氢原子提取反应在热力学上是可行的,但具有较高的活化能垒(在3.0埃的活性位点/底物距离下约为37千卡/摩尔),这表明Cu(II)(M)-OOH物种不是PHM中活性铜/氧(2)中间体。相比之下,在相当的活性位点/底物距离下(约14千卡/摩尔),侧接Cu(II)(M)-超氧中间体从底物提取氢原子是一个几乎等能量的过程,反应势垒较低,这表明侧接Cu(II)(M)-超氧是PHM中的活性物种。Cu(II)(M)-OOH和Cu(II)(M)-超氧物种的不同反应活性与其在氢原子提取反应中涉及的不同前沿分子轨道相关。在氢原子提取后,底物羟基化的合理途径涉及“水辅助”直接将OH转移到底物自由基上,这会产生高能Cu(II)(M)-氧基物种。这为从铜(H)位点进行分子内电子转移以完成PHM中的反应提供了必要的驱动力。与血蓝蛋白、酪氨酸酶和儿茶酚氧化酶中的偶联双核铜活性位点相比,Cu(II)(M)-OOH和Cu(II)(M)-超氧中间体之间的不同反应活性模式为PHM和多巴胺β-单加氧酶活性位点的非偶联性质在氧(2)活化中的作用提供了见解。