Suppr超能文献

金属介导的肽加工。铜和铁如何催化酰胺化和交联等多种肽修饰。

Metal-mediated peptide processing. How copper and iron catalyze diverse peptide modifications such as amidation and crosslinking.

作者信息

Blackburn Ninian J

机构信息

Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University Portland OR 97239 USA

出版信息

RSC Chem Biol. 2025 Jun 6. doi: 10.1039/d5cb00085h.

Abstract

Peptide processing is an important post-translational function that converts newly synthesized pro-peptides into their biologically active mature forms. In this review we discuss two such processes, peptide amidation and ribosomally synthesized post-translationally modified peptide (RiPP) synthesis. The first step in peptide amidation is catalyzed by copper, utilizing a single enzyme peptidylglycine monooxygenase (PHM), while RiPP chemistry can utilize Fe-containing radical SAM enzymes and in a more recent discovery Cu-containing burpitide cyclases. For PHM we describe the canonical mechanism built on three decades of structural, spectroscopic and computational work that posits mononuclear reactivity coupled to long range electron transfer. We discuss this alongside new experimental evidence that suggests instead an open-to-closed conformationally gated mechanism where a binuclear copper entity is the reactive species. Next we describe new insights into RiPP chemistry of thioether formation formed cysteine to peptidyl-C crosslinking in the radical SAM enzymes PapB and Tte1186. Here Se edge XAS has documented selenocysteine to Fe binding at an auxiliary FeS cluster as an important step in S/Se to peptidyl-C coupling. Finally we examine analogous radical-induced peptide crosslinking in a new class of peptide cyclases termed burpitide cyclases (BpCs) some of which exhibit a striking similarity to PHM, yet show catalytic chemistry leading to a different product profile. These comparisons emphasize how nature leverages very specific properties of metal ions, and their ability to underpin catalysis radical processes to bring about a variety of important biochemical and biological outcomes.

摘要

肽加工是一种重要的翻译后功能,它将新合成的前体肽转化为具有生物活性的成熟形式。在本综述中,我们讨论了两个这样的过程,即肽酰胺化和核糖体合成的翻译后修饰肽(RiPP)合成。肽酰胺化的第一步由铜催化,利用单一酶肽基甘氨酸单加氧酶(PHM),而RiPP化学可以利用含铁的自由基SAM酶,并且在最近的一项发现中,还可以利用含铜的burpitide环化酶。对于PHM,我们描述了基于三十年的结构、光谱和计算工作建立的经典机制,该机制假定单核反应性与长程电子转移相关。我们将此与新的实验证据一起讨论,这些证据表明,相反,存在一种从开放到封闭的构象门控机制,其中双核铜实体是反应物种。接下来,我们描述了对自由基SAM酶PapB和Tte1186中硫醚形成的RiPP化学的新见解,硫醚形成涉及半胱氨酸与肽基-C的交联。在这里,硒边缘X射线吸收光谱记录了硒代半胱氨酸与辅助FeS簇上的铁结合,这是S/Se与肽基-C偶联的重要步骤。最后,我们研究了一类新的肽环化酶,即burpitide环化酶(BpC)中类似的自由基诱导的肽交联,其中一些与PHM表现出惊人的相似性,但显示出导致不同产物谱的催化化学。这些比较强调了大自然如何利用金属离子的非常特殊的性质,以及它们支持自由基过程催化的能力,从而带来各种重要的生化和生物学结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb71/12218260/5fd64d9b1651/d5cb00085h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验