Yoon Myung-Han, Kim Choongik, Facchetti Antonio, Marks Tobin J
Department of Chemistry and the Materials Research Center, Northwestern University 2145 Sheridan Road, Evanston, IL 60208, USA.
J Am Chem Soc. 2006 Oct 4;128(39):12851-69. doi: 10.1021/ja063290d.
This study describes a general approach for probing semiconductor-dielectric interfacial chemistry effects on organic field-effect transistor performance parameters using bilayer gate dielectrics. Organic semiconductors exhibiting p-/n-type or ambipolar majority charge transport are grown on six different bilayer dielectric structures consisting of various spin-coated polymers/HMDS on 300 nm SiO(2)/p(+)-Si, and are characterized by AFM, SEM, and WAXRD, followed by transistor electrical characterization. In the case of air-sensitive (generally high LUMO energy) n-type semiconductors, dielectric surface modifications induce large variations in the corresponding OTFT performance parameters although the film morphologies and microstructures remain similar. In marked contrast, the device performance of air-stable n-type and p-type semiconductors is not significantly affected by the same dielectric surface modifications. Among the bilayer dielectric structures examined, nonpolar polystyrene coatings on SiO(2) having minimal gate leakage and surface roughness significantly enhance the mobilities of overlying air-sensitive n-type semiconductors to as high as approximately 2 cm(2)/(V s) for alpha,omega-diperfluorohexylcarbonylquaterthiophene polystyrene/SiO(2). Electron trapping due to silanol and carbonyl functionalities at the semiconductor-dielectric interface is identified as the principal origin of the mobility sensitivity to the various surface chemistries in the case of n-type semiconductors having high LUMO energies. Thiophene-based n-type semiconductors exhibiting similar film morphologies and microstructures on various bilayer gate dielectrics therefore provide an incisive means to probe TFT performance parameters versus semiconductor-dielectric interface relationships.
本研究描述了一种使用双层栅极电介质来探究半导体 - 电介质界面化学效应对有机场效应晶体管性能参数影响的通用方法。在由300 nm SiO₂/p⁺ - Si上各种旋涂聚合物/HMDS组成的六种不同双层电介质结构上生长呈现p型/n型或双极性多数电荷传输的有机半导体,并通过原子力显微镜(AFM)、扫描电子显微镜(SEM)和广角X射线衍射(WAXRD)进行表征,随后进行晶体管电学表征。对于对空气敏感(通常具有较高最低未占分子轨道能量)的n型半导体,尽管薄膜形态和微观结构保持相似,但电介质表面改性会导致相应有机薄膜晶体管(OTFT)性能参数出现很大变化。与之形成鲜明对比的是,空气稳定的n型和p型半导体的器件性能不受相同电介质表面改性的显著影响。在所研究的双层电介质结构中,SiO₂上具有最小栅极泄漏和表面粗糙度的非极性聚苯乙烯涂层可将覆盖其上的对空气敏感的n型半导体的迁移率显著提高至高达约2 cm²/(V·s)(对于α,ω - 二全氟己基羰基四噻吩/聚苯乙烯/SiO₂)。在具有高最低未占分子轨道能量的n型半导体情况下,半导体 - 电介质界面处由于硅醇和羰基官能团导致的电子俘获被确定为迁移率对各种表面化学性质敏感的主要原因。因此,在各种双层栅极电介质上呈现相似薄膜形态和微观结构的基于噻吩的n型半导体提供了一种敏锐的手段来探究薄膜晶体管性能参数与半导体 - 电介质界面关系。