Suppr超能文献

新兴真菌病原体阿萨希毛孢子菌的生物膜形成:发育、结构及抗真菌耐药性

Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance.

作者信息

Di Bonaventura Giovanni, Pompilio Arianna, Picciani Carla, Iezzi Manuela, D'Antonio Domenico, Piccolomini Raffaele

机构信息

Laboratory of Clinical Microbiology, Department of Biomedical Sciences, G d'Annunzio University of Chiei-Pescara, Chieti, Italy.

出版信息

Antimicrob Agents Chemother. 2006 Oct;50(10):3269-76. doi: 10.1128/AAC.00556-06.

Abstract

Trichosporon asahii is the most common cause of fatal disseminated trichosporonosis, frequently associated with indwelling medical devices. Despite the use of antifungal drugs to treat trichosporonosis, infection is often persistent and is associated with high mortality. This drove our interest in evaluating the capability of T. asahii to form a biofilm on biomaterial-representative polystyrene surfaces through the development and optimization of a reproducible T. asahii-associated biofilm model. Time course analyses of viable counts and a formazan salt reduction assay, as well as microscopy studies, revealed that biofilm formation by T. asahii occurred in an organized fashion through four distinct developmental phases: initial adherence of yeast cells (0 to 2 h), germination and microcolony formation (2 to 4 h), filamentation (4 to 6 h), and proliferation and maturation (24 to 72 h). Scanning electron microscopy and confocal scanning laser microscopy revealed that mature T. asahii biofilms (72-h) displayed a complex, heterogeneous three-dimensional structure, consisting of a dense network of metabolically active yeast cells and hyphal elements completely embedded within exopolymeric material. Antifungal susceptibility testing demonstrated a remarkable rise in the MICs of sessile T. asahii cells against clinically used amphotericin B, caspofungin, voriconazole, and fluconazole compared to their planktonic counterparts. In particular, T. asahii biofilms were up to 16,000 times more resistant to voriconazole, the most active agent against planktonic cells (MIC, 0.06 microg/ml). Our results suggest that the ability of T. asahii to form a biofilm may be a major factor in determining persistence of the infection in spite of in vitro susceptibility of clinical isolates.

摘要

阿萨希毛孢子菌是致死性播散性毛孢子菌病最常见的病因,常与留置医疗设备相关。尽管使用抗真菌药物治疗毛孢子菌病,但感染往往持续存在且死亡率高。这促使我们有兴趣通过开发和优化可重复的阿萨希毛孢子菌相关生物膜模型,来评估阿萨希毛孢子菌在生物材料代表性聚苯乙烯表面形成生物膜的能力。活菌计数的时间进程分析、甲臜盐还原试验以及显微镜研究表明,阿萨希毛孢子菌的生物膜形成以有组织的方式经历四个不同的发育阶段:酵母细胞的初始黏附(0至2小时)、发芽和微菌落形成(2至4小时)、丝状化(4至6小时)以及增殖和成熟(24至72小时)。扫描电子显微镜和共聚焦扫描激光显微镜显示,成熟的阿萨希毛孢子菌生物膜(72小时)呈现出复杂、异质的三维结构,由代谢活跃的酵母细胞和菌丝成分组成的致密网络完全嵌入胞外聚合物材料中。抗真菌药敏试验表明,与浮游状态的阿萨希毛孢子菌细胞相比,固着状态的阿萨希毛孢子菌细胞对临床使用的两性霉素B、卡泊芬净、伏立康唑和氟康唑的最低抑菌浓度显著升高。特别是,阿萨希毛孢子菌生物膜对伏立康唑的耐药性比浮游细胞高16000倍,伏立康唑是对浮游细胞最有效的药物(最低抑菌浓度为0.06微克/毫升)。我们的结果表明,尽管临床分离株在体外敏感,但阿萨希毛孢子菌形成生物膜的能力可能是决定感染持续存在的主要因素。

相似文献

2
Multiple species of Trichosporon produce biofilms highly resistant to triazoles and amphotericin B.
PLoS One. 2014 Oct 31;9(10):e109553. doi: 10.1371/journal.pone.0109553. eCollection 2014.
5
Biofilm formation and antifungal susceptibility of Trichosporon asahii isolates from Mexican patients.
Rev Iberoam Micol. 2018 Jan-Mar;35(1):22-26. doi: 10.1016/j.riam.2017.02.008. Epub 2017 Dec 26.
6
In Vitro Activity of Berberine Alone and in Combination with Antifungal Drugs Against Planktonic Forms and Biofilms of Trichosporon Asahii.
Mycopathologia. 2017 Oct;182(9-10):829-837. doi: 10.1007/s11046-017-0119-7. Epub 2017 Jan 31.
7
Efficacy of Ethanol against Trichosporon asahii Biofilm in vitro.
Med Mycol. 2015 May;53(4):396-404. doi: 10.1093/mmy/myv006.
10
Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp.
Microb Pathog. 2019 May;130:219-225. doi: 10.1016/j.micpath.2019.03.013. Epub 2019 Mar 14.

引用本文的文献

1
White piedra: fungal extracellular matrix formation and its importance in pathogenesis. An ultrastructural study.
An Bras Dermatol. 2025 Jul-Aug;100(4):501140. doi: 10.1016/j.abd.2025.501140. Epub 2025 Jul 3.
3
The Hidden Fortress: A Comprehensive Review of Fungal Biofilms with Emphasis on .
J Fungi (Basel). 2025 Mar 19;11(3):236. doi: 10.3390/jof11030236.
4
Exploring the female genital tract mycobiome in young South African women using metaproteomics.
Microbiome. 2025 Mar 19;13(1):76. doi: 10.1186/s40168-025-02066-1.
5
: emerging challenges in pathogenesis and drug resistance.
Future Microbiol. 2025 Mar;20(4):333-343. doi: 10.1080/17460913.2025.2457858. Epub 2025 Jan 27.
8
Case report: Diagnostic and therapeutic challenges of fungal endocarditis by in a child with congenital heart defects.
Front Pediatr. 2023 Oct 6;11:1200215. doi: 10.3389/fped.2023.1200215. eCollection 2023.
9
Infective Endocarditis of Prosthetic Valve: A Case Report and Literature Review.
Antibiotics (Basel). 2023 Jul 13;12(7):1181. doi: 10.3390/antibiotics12071181.
10
Gene Enhances Drug Resistance to Azoles by Improving Drug Efflux and Biofilm Formation.
Int J Mol Sci. 2023 May 16;24(10):8855. doi: 10.3390/ijms24108855.

本文引用的文献

2
Basic features of biofilms--why are they difficult therapeutic targets?
Ann R Australas Coll Dent Surg. 2004 Oct;17:30-4.
3
Trichosporon asahii fatal infection in a non-neutropenic patient after orthotopic liver transplantation.
Transpl Infect Dis. 2005 Sep-Dec;7(3-4):162-5. doi: 10.1111/j.1399-3062.2005.00104.x.
4
Fungal biofilms and antimycotics.
Curr Drug Targets. 2005 Dec;6(8):887-94. doi: 10.2174/138945005774912762.
5
Isolation of Trichosporon in a hematology ward.
Mycoses. 2005 Jan;48(1):45-9. doi: 10.1111/j.1439-0507.2004.01062.x.
6
Candida biofilm resistance.
Drug Resist Updat. 2004 Aug-Oct;7(4-5):301-9. doi: 10.1016/j.drup.2004.09.002.
7
Trichosporon asahii infection of a dialysis PTFE arteriovenous graft.
Clin Nephrol. 2004 Jul;62(1):66-8. doi: 10.5414/cnp62066.
8
Infections due to emerging and uncommon medically important fungal pathogens.
Clin Microbiol Infect. 2004 Mar;10 Suppl 1:48-66. doi: 10.1111/j.1470-9465.2004.00839.x.
9
Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime.
Antimicrob Agents Chemother. 2004 Jan;48(1):151-60. doi: 10.1128/AAC.48.1.151-160.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验