Suppr超能文献

基于结构的高通量药效团建模作为成功并行虚拟筛选的基础。

High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening.

作者信息

Steindl Theodora M, Schuster Daniela, Wolber Gerhard, Laggner Christian, Langer Thierry

机构信息

Inte:Ligand GmbH, Clemens Maria Hofbauer-Gasse 6, 2344 Maria Enzersdorf, Austria.

出版信息

J Comput Aided Mol Des. 2006 Dec;20(12):703-15. doi: 10.1007/s10822-006-9066-y. Epub 2006 Sep 29.

Abstract

In order to assess bioactivity profiles for small organic molecules we propose to use parallel pharmacophore-based virtual screening. Our aim is to provide a fast, reliable and scalable system that allows for rapid in silico activity profile prediction of virtual molecules. In this proof of principle study, carried out with the new structure-based pharmacophore modelling tool LigandScout and the high-performance database mining platform Catalyst, we present a model work for the application of parallel pharmacophore-based virtual screening on a set of 50 structure-based pharmacophore models built for various viral targets and 100 antiviral compounds. The latter were screened against all pharmacophore models in order to determine if their known biological targets could be correctly predicted via an enrichment of corresponding pharmaco-phores matching these ligands. The results demonstrate that the desired enrichment, i.e. a successful activity profiling, was achieved for approximately 90% of all input molecules. Additionally, we discuss descriptors for output validation, as well as various aspects influencing the analysis of the obtained activity profiles, and the effect of the searching mode utilized for screening. The results of the study presented here clearly indicate that pharmacophore-based parallel screening comprises a reliable in silico method to predict the potential biological activities of a compound or a compound library by screening it against a series of pharmacophore queries.

摘要

为了评估小分子有机化合物的生物活性概况,我们建议使用基于平行药效团的虚拟筛选方法。我们的目标是提供一个快速、可靠且可扩展的系统,能够对虚拟分子的活性概况进行快速的计算机模拟预测。在这项原理验证研究中,我们使用新的基于结构的药效团建模工具LigandScout和高性能数据库挖掘平台Catalyst,针对为各种病毒靶点构建的50个基于结构的药效团模型和100种抗病毒化合物,展示了基于平行药效团的虚拟筛选的模型工作。对这100种抗病毒化合物针对所有药效团模型进行筛选,以确定能否通过富集与这些配体匹配的相应药效团来正确预测其已知的生物学靶点。结果表明,大约90%的所有输入分子都实现了预期的富集,即成功的活性概况分析。此外,我们还讨论了用于输出验证的描述符,以及影响所获得活性概况分析的各个方面,以及筛选所使用的搜索模式的效果。此处呈现的研究结果清楚地表明,基于药效团的平行筛选是一种可靠的计算机模拟方法,可通过针对一系列药效团查询对化合物或化合物库进行筛选来预测其潜在的生物学活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验