Zeng Zhigang, Wang Jun
School of Automation, Wuhan University of Technology, Wuhan, Hubei 430070, China.
Neural Netw. 2006 Dec;19(10):1528-37. doi: 10.1016/j.neunet.2006.08.009. Epub 2006 Oct 11.
This paper presents new theoretical results on the global exponential stability of recurrent neural networks with bounded activation functions and bounded time-varying delays in the presence of strong external stimuli. It is shown that the Cohen-Grossberg neural network is globally exponentially stable, if the absolute value of the input vector exceeds a criterion. As special cases, the Hopfield neural network and the cellular neural network are examined in detail. In addition, it is shown that criteria herein, if partially satisfied, can still be used in combination with existing stability conditions. Simulation results are also discussed in two illustrative examples.
本文给出了具有有界激活函数和有界时变延迟的递归神经网络在强外部刺激下全局指数稳定性的新理论结果。结果表明,如果输入向量的绝对值超过一个准则,则科恩 - 格罗斯伯格神经网络是全局指数稳定的。作为特殊情况,对霍普菲尔德神经网络和细胞神经网络进行了详细研究。此外,结果表明本文中的准则如果部分满足,仍可与现有的稳定性条件结合使用。还通过两个示例讨论了仿真结果。