Suppr超能文献

具有时变延迟的递归神经网络在强外部刺激下的全局指数稳定性

Global exponential stability of recurrent neural networks with time-varying delays in the presence of strong external stimuli.

作者信息

Zeng Zhigang, Wang Jun

机构信息

School of Automation, Wuhan University of Technology, Wuhan, Hubei 430070, China.

出版信息

Neural Netw. 2006 Dec;19(10):1528-37. doi: 10.1016/j.neunet.2006.08.009. Epub 2006 Oct 11.

Abstract

This paper presents new theoretical results on the global exponential stability of recurrent neural networks with bounded activation functions and bounded time-varying delays in the presence of strong external stimuli. It is shown that the Cohen-Grossberg neural network is globally exponentially stable, if the absolute value of the input vector exceeds a criterion. As special cases, the Hopfield neural network and the cellular neural network are examined in detail. In addition, it is shown that criteria herein, if partially satisfied, can still be used in combination with existing stability conditions. Simulation results are also discussed in two illustrative examples.

摘要

本文给出了具有有界激活函数和有界时变延迟的递归神经网络在强外部刺激下全局指数稳定性的新理论结果。结果表明,如果输入向量的绝对值超过一个准则,则科恩 - 格罗斯伯格神经网络是全局指数稳定的。作为特殊情况,对霍普菲尔德神经网络和细胞神经网络进行了详细研究。此外,结果表明本文中的准则如果部分满足,仍可与现有的稳定性条件结合使用。还通过两个示例讨论了仿真结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验