Suppr超能文献

含分布时滞的霍普菲尔德神经网络的全局渐近稳定性

Global asymptotic stability of Hopfield neural network involving distributed delays.

作者信息

Zhao Hongyong

机构信息

Department of Mathematics, Nanjing University, Nanjing 210093, China.

出版信息

Neural Netw. 2004 Jan;17(1):47-53. doi: 10.1016/S0893-6080(03)00077-7.

Abstract

In the paper, we study dynamical behaviors of Hopfield neural networks system with distributed delays. Some new criteria ensuring the existence and uniqueness, and the global asymptotic stability (GAS) of equilibrium point are derived. In the results, we do not assume that the signal propagation functions satisfy the Lipschitz condition and do not require them to be bounded, differentiable or strictly increasing. Moreover, the symmetry of the connection matrix is not also necessary. Thus, we improve some previous works of other researchers. These conditions are presented in terms of system parameters and have importance leading significance in designs and applications of the GAS for Hopfield neural networks system with distributed delays. Two examples are also worked out to demonstrate the advantages of our results.

摘要

在本文中,我们研究了具有分布时滞的Hopfield神经网络系统的动力学行为。推导了一些确保平衡点存在唯一性和全局渐近稳定性(GAS)的新准则。在结果中,我们不假设信号传播函数满足Lipschitz条件,也不要求它们有界、可微或严格递增。此外,连接矩阵的对称性也不是必需的。因此,我们改进了其他研究人员先前的一些工作。这些条件是根据系统参数给出的,对于具有分布时滞的Hopfield神经网络系统的GAS设计和应用具有重要的指导意义。还给出了两个例子来说明我们结果的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验