Tate Jennifer J, Feller André, Dubois Evelyne, Cooper Terrance G
Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA.
J Biol Chem. 2006 Dec 8;281(49):37980-92. doi: 10.1074/jbc.M606973200. Epub 2006 Oct 2.
Tor1,2 control of type 2A-related phosphatase activities in Saccharomyces cerevisiae has been reported to be responsible for the regulation of Gln3 phosphorylation and intracellular localization in response to the nature of the nitrogen source available. According to the model, excess nitrogen stimulates Tor1,2 to phosphorylate Tip41 and/or Tap42. Tap42 then complexes with and inactivates Sit4 phosphatase, thereby preventing it from dephosphorylating Gln3. Phosphorylated Gln3 complexes with Ure2 and is sequestered in the cytoplasm. When Tor1,2 kinase activities are inhibited by limiting nitrogen, or rapamycin-treatment, Tap42 can no longer complex with Sit4. Active Sit4 dephosphorylates Gln3, which can then localize to the nucleus and activate transcription. The paucity of experimental data directly correlating active Sit4 and Pph3 with Gln3 regulation prompted us to assay Gln3-Myc(13) phosphorylation and intracellular localization in isogenic wild type, sit4, pph3, and sit4pph3 deletion strains. We found that Sit4 actively brought about Gln3-Myc(13) dephosphorylation in both good (glutamine or ammonia) and poor (proline) nitrogen sources. This Sit4 activity masked nitrogen source-dependent changes in Gln3-Myc(13) phosphorylation which were clearly visible when SIT4 was deleted. The extent of Sit4 requirement for Gln3 nuclear localization was both nitrogen source- and strain-dependent. In some strains, Sit4 was not even required for Gln3 nuclear localization in untreated or rapamycin-treated, proline-grown cells or Msx-treated, ammonia-grown cells.
据报道,酿酒酵母中Tor1、2对2A类相关磷酸酶活性的控制负责响应可用氮源的性质来调节Gln3的磷酸化和细胞内定位。根据该模型,过量的氮刺激Tor1、2使Tip41和/或Tap42磷酸化。然后Tap42与Sit4磷酸酶结合并使其失活,从而阻止其使Gln3去磷酸化。磷酸化的Gln3与Ure2结合并被隔离在细胞质中。当Tor1、2激酶活性因限制氮或雷帕霉素处理而受到抑制时,Tap42不再能与Sit4结合。有活性的Sit4使Gln3去磷酸化,然后Gln3可以定位到细胞核并激活转录。直接将有活性的Sit4和Pph3与Gln3调节相关联的实验数据很少,这促使我们检测同基因野生型、sit4、pph3和sit4pph3缺失菌株中Gln3-Myc(13)的磷酸化和细胞内定位。我们发现,在优质(谷氨酰胺或氨)和劣质(脯氨酸)氮源中,Sit4都能积极地使Gln3-Myc(13)去磷酸化。这种Sit4活性掩盖了Gln3-Myc(13)磷酸化中氮源依赖性的变化,当SIT4缺失时,这种变化清晰可见。Sit4对Gln3核定位的需求程度既取决于氮源也取决于菌株。在一些菌株中,在未经处理或经雷帕霉素处理的脯氨酸生长细胞或经Msx处理的氨生长细胞中,Gln3核定位甚至不需要Sit4。