Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163 Tennessee.
Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, 38163 Tennessee.
Genetics. 2019 Aug;212(4):1205-1225. doi: 10.1534/genetics.119.302371. Epub 2019 Jun 18.
lives in boom and bust nutritional environments. Sophisticated regulatory systems have evolved to rapidly cope with these changes while preserving intracellular homeostasis. Target of Rapamycin Complex 1 (TorC1), is a serine/threonine kinase complex and a principle nitrogen-responsive regulator. TorC1 is activated by excess nitrogen and downregulated by limiting nitrogen. Two of TorC1's many downstream targets are Gln3 and Gat1-GATA-family transcription activators-whose localization and function are Nitrogen Catabolite Repression- (NCR-) sensitive. In nitrogen replete environments, TorC1 is activated, thereby inhibiting the Tap42-Sit4 and Tap42-PP2A (Pph21/Pph22-Tpd3, Pph21,22-Rts1/Cdc55) phosphatase complexes. Gln3 is phosphorylated, sequestered in the cytoplasm and NCR-sensitive transcription repressed. In nitrogen-limiting conditions, TorC1 is downregulated and Tap42-Sit4 and Tap42-PP2A are active. They dephosphorylate Gln3, which dissociates from Ure2, relocates to the nucleus, and activates transcription. A paradoxical observation, however, led us to suspect that Gln3 control was more complex than appreciated, , Sit4 dephosphorylates Gln3 more in excess than in limiting nitrogen conditions. This paradox motivated us to reinvestigate the roles of these phosphatases in Gln3 regulation. We discovered that: (i) Sit4 and PP2A actively function both in conditions where TorC1 is activated as well as down-regulated; (ii) nuclear Gln3 is more highly phosphorylated than when it is sequestered in the cytoplasm; (iii) in nitrogen-replete conditions, Gln3 relocates from the nucleus to the cytoplasm, where it is dephosphorylated by Sit4 and PP2A; and (iv) in nitrogen excess and limiting conditions, Sit4, PP2A, and Ure2 are all required to maintain cytoplasmic Gln3 in its dephosphorylated form.
生活在繁荣和萧条的营养环境中。已经进化出复杂的调节系统来快速应对这些变化,同时保持细胞内的稳态。雷帕霉素复合物 1(TorC1)是一种丝氨酸/苏氨酸激酶复合物,是主要的氮响应调节剂。TorC1 被过量的氮激活,并被限制的氮下调。TorC1 的许多下游靶标之一是 Gln3 和 Gat1-GATA 家族转录激活因子,其定位和功能对氮分解代谢抑制(NCR)敏感。在氮充足的环境中,TorC1 被激活,从而抑制 Tap42-Sit4 和 Tap42-PP2A(Pph21/Pph22-Tpd3、Pph21、22-Rts1/Cdc55)磷酸酶复合物。Gln3 被磷酸化,在细胞质中被隔离,NCR 敏感的转录被抑制。在氮限制条件下,TorC1 下调,Tap42-Sit4 和 Tap42-PP2A 是活跃的。它们使 Gln3 去磷酸化,Gln3 与 Ure2 分离,重新定位到细胞核,并激活转录。然而,一个矛盾的观察结果使我们怀疑 Gln3 的控制比预期的更为复杂,即在过量氮和限制氮条件下,Sit4 对 Gln3 的去磷酸化作用更明显。这个悖论促使我们重新研究这些磷酸酶在 Gln3 调节中的作用。我们发现:(i)Sit4 和 PP2A 在 TorC1 被激活和下调的情况下都积极发挥作用;(ii)细胞核中的 Gln3 比细胞质中被隔离时的磷酸化程度更高;(iii)在氮充足的条件下,Gln3 从细胞核重新定位到细胞质,在那里它被 Sit4 和 PP2A 去磷酸化;(iv)在氮过量和限制条件下,Sit4、PP2A 和 Ure2 都需要维持细胞质中 Gln3 的去磷酸化形式。