Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
Biochim Biophys Acta Mol Basis Dis. 2018 Jan;1864(1):79-88. doi: 10.1016/j.bbadis.2017.10.010. Epub 2017 Oct 6.
The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.
尼曼-匹克 C 型是一种罕见的神经退行性疾病,由 NPC1 或 NPC2 的功能丧失点突变引起,这些突变影响人类细胞中鞘脂和固醇的动态平衡。我们之前曾表明,缺乏 Ncr1(人类 NPC1 蛋白的同源物)的酵母表现出过早衰老的表型,并且对与线粒体功能障碍和长链碱基积累相关的氧化应激更敏感。在这项研究中,脂质组学分析显示 ncr1Δ细胞中神经酰胺种类的水平发生了特定变化,包括二氢神经酰胺减少和植物神经酰胺增加。此外,Ceramide 激活的蛋白磷酸酶 Sit4 在 ncr1Δ 细胞中的激活增加。删除 SIT4 或其调节亚基 CDC55 增加了 ncr1Δ 细胞的时序寿命和过氧化氢抗性,并抑制了其线粒体缺陷。值得注意的是,ncr1Δsit4Δ 细胞中 Sch9 和 Pkh1 介导的 Sch9 磷酸化显著减少。这些结果表明,植物神经酰胺的积累和依赖 Sit4 的信号转导部分通过调节 Pkh1-Sch9 途径,介导尼曼-匹克 C1 型酵母模型中的线粒体功能障碍和寿命缩短。