Jochmans Dirk, Deval Jérôme, Kesteleyn Bart, Van Marck Herwig, Bettens Eva, De Baere Inky, Dehertogh Pascale, Ivens Tania, Van Ginderen Marcia, Van Schoubroeck Bertrand, Ehteshami Maryam, Wigerinck Piet, Götte Matthias, Hertogs Kurt
Tibotec BVBA, Generaal De Wittelaan L 11B 3, 2800 Mechelen, Belgium.
J Virol. 2006 Dec;80(24):12283-92. doi: 10.1128/JVI.00889-06. Epub 2006 Oct 4.
We have discovered a novel class of human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors that block the polymerization reaction in a mode distinct from those of the nucleoside or nucleotide RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). For this class of indolopyridone compounds, steady-state kinetics revealed competitive inhibition with respect to the nucleotide substrate. Despite substantial structural differences with classical chain terminators or natural nucleotides, these data suggest that the nucleotide binding site of HIV RT may accommodate this novel class of RT inhibitors. To test this hypothesis, we have studied the mechanism of action of the prototype compound indolopyridone-1 (INDOPY-1) using a variety of complementary biochemical tools. Time course experiments with heteropolymeric templates showed "hot spots" for inhibition following the incorporation of pyrimidines (T>C). Moreover, binding studies and site-specific footprinting experiments revealed that INDOPY-1 traps the complex in the posttranslocational state, preventing binding and incorporation of the next complementary nucleotide. The novel mode of action translates into a unique resistance profile. While INDOPY-1 susceptibility is unaffected by mutations associated with NNRTI or multidrug NRTI resistance, mutations M184V and Y115F are associated with decreased susceptibility, and mutation K65R confers hypersusceptibility to INDOPY-1. This resistance profile provides additional evidence for active site binding. In conclusion, this class of indolopyridones can occupy the nucleotide binding site of HIV RT by forming a stable ternary complex whose stability is mainly dependent on the nature of the primer 3' end.
我们发现了一类新型的人类免疫缺陷病毒(HIV)逆转录酶(RT)抑制剂,它们以一种不同于核苷或核苷酸RT抑制剂(NRTIs)和非核苷RT抑制剂(NNRTIs)的方式阻断聚合反应。对于这类吲哚并吡啶酮化合物,稳态动力学显示对核苷酸底物存在竞争性抑制作用。尽管与经典的链终止剂或天然核苷酸在结构上有很大差异,但这些数据表明HIV RT的核苷酸结合位点可能容纳这类新型的RT抑制剂。为了验证这一假设,我们使用了各种互补的生化工具研究了原型化合物吲哚并吡啶酮-1(INDOPY-1)的作用机制。使用异聚模板进行的时间进程实验表明,在嘧啶(T>C)掺入后存在抑制“热点”。此外,结合研究和位点特异性足迹实验表明,INDOPY-1将复合物捕获在转位后状态,阻止下一个互补核苷酸的结合和掺入。这种新的作用模式转化为独特的耐药谱。虽然INDOPY-1的敏感性不受与NNRTI或多药NRTI耐药相关的突变影响,但M184V和Y115F突变与敏感性降低有关,而K65R突变使对INDOPY-1的敏感性增加。这种耐药谱为活性位点结合提供了额外的证据。总之,这类吲哚并吡啶酮可以通过形成稳定的三元复合物占据HIV RT的核苷酸结合位点,其稳定性主要取决于引物3'端的性质。