Das Kalyan, Balzarini Jan, Miller Matthew T, Maguire Anita R, DeStefano Jeffrey J, Arnold Eddy
Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey, United States.
Rega Institute for Medical Research and Department of Microbiology and Immunology, KU Leuven , B-3000 Leuven, Belgium.
ACS Chem Biol. 2016 Aug 19;11(8):2158-64. doi: 10.1021/acschembio.6b00187. Epub 2016 Jun 6.
HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3'-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg(2+) ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg(2+) (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors.
人类免疫缺陷病毒1型逆转录酶(RT)催化将单个核苷酸掺入与RNA或DNA模板链互补的病毒DNA链中;在执行此任务时,RT的聚合酶活性位点会呈现多种构象和结构状态。相关状态包括dNTP在N位点的结合、核苷酸的催化掺入、焦磷酸的释放以及引物3'端向P位点的移位。对这些状态的结构表征可能有助于理解药物活性和耐药性的分子机制,并有助于开发新的RT抑制剂。我们使用一个38聚体DNA模板-引物适配体作为底物模拟物,结晶出一种具有催化活性但在晶体中无法进行移位的RT/dsDNA复合物。RT在晶体中进行dNTP结合和掺入的能力使得能够获得一系列结构:(I)RT/DNA(P位点),(II)RT/DNA/AZTTP三元复合物,(III)RT/AZT终止的DNA(N位点),以及(IV)RT/AZT终止的DNA(N位点)/膦甲酸盐复合物。稳定的N位点复合物允许膦甲酸盐作为焦磷酸模拟物结合。在预移位结构III中催化添加AZTMP后,Mg(2+)离子解离,而在结构IV中离子A和B重新进入活性位点以结合膦甲酸盐。膦甲酸盐的结合涉及与Mg(2+)(B)离子的螯合以及与K65和R72的相互作用。对膦甲酸盐与最近发现的核苷酸竞争性RT抑制剂(NcRTI)α-T-CNP在酶的两种不同构象状态下相互作用的分析为开发新型聚合酶活性位点RT抑制剂提供了见解。