Di Cera E, Kong Y
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, MO 63110, USA.
Biophys Chem. 1996 Oct 30;61(2-3):107-24. doi: 10.1016/s0301-4622(96)02178-3.
Ligand binding to a linear lattice composed of N sites, under general conditions of cooperativity and number of sites covered upon binding, m, is approached in terms of the theory of contracted partition functions. The partition function of the system obeys a recursion relation leading to a generating function that provides an exact analytical solution for any case of interest. Site-specific properties of the lattice are derived from simple transformations of the analytical expressions. The McGhee-von Hippel model is obtained as a special case in the limit N --> infinity. The derivation is straightforward and involves no combinatorial arguments. Partition functions and site-specific properties are also derived for the case of non-cooperative binding to a two-dimensional torus of length N, containing s sites in its section for a total of sN sites. The torus provides a relevant model for ligand binding to double-stranded DNA (s = 2) or protein helices (s = 3,4). It is proved that non-cooperative binding to the two-dimensional torus can mimic cooperative binding to a one-dimensional linear lattice when m = s. The dimensional embedding of the lattice and the geometry of interaction of its sites play a crucial role in defining the binding properties of the system accessible to experimental measurements. Hence, caution must be exercised in the interpretation of Scatchard plots in terms of the one-dimensional McGhee-von Hippel model, especially when m < or = 4 and the geometry of the system is clearly two-dimensional.
在协同性和结合时被覆盖位点数量(m)的一般条件下,配体与由(N)个位点组成的线性晶格的结合,是根据收缩配分函数理论来探讨的。系统的配分函数服从一个递归关系,该关系导致一个生成函数,此生成函数为任何感兴趣的情况提供了精确的解析解。晶格的位点特异性性质是从解析表达式的简单变换中推导出来的。在(N\to\infty)的极限情况下,麦吉 - 冯·希佩尔模型作为一个特殊情况得到。推导过程很直接,不涉及组合论证。对于配体与二维环面(长度为(N),其截面包含(s)个位点,总共(sN)个位点)的非协同结合情况,也推导了配分函数和位点特异性性质。环面为配体与双链DNA((s = 2))或蛋白质螺旋((s = 3,4))的结合提供了一个相关模型。证明了当(m = s)时,配体与二维环面的非协同结合可以模拟与一维线性晶格的协同结合。晶格的维度嵌入及其位点的相互作用几何在定义系统可通过实验测量的结合性质方面起着关键作用。因此,在根据一维麦吉 - 冯·希佩尔模型解释斯卡查德图时必须谨慎,特别是当(m\leq4)且系统几何形状明显为二维时。