Suppr超能文献

尝试通过自然时间分析从增量统计中区分长程时间相关性。

Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis.

作者信息

Varotsos P A, Sarlis N V, Skordas E S, Tanaka H K, Lazaridou M S

机构信息

Solid State Section, Physics Department, University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021123. doi: 10.1103/PhysRevE.74.021123. Epub 2006 Aug 23.

Abstract

Self-similarity may originate from two origins: i.e., the process memory and the process' increments "infinite" variance. A distinction is attempted by employing the natural time chi . Concerning the first origin, we analyze recent data on seismic electric signals, which support the view that they exhibit infinitely ranged temporal correlations. Concerning the second, slowly driven systems that emit bursts of various energies E obeying the power-law distribution--i.e., P(E) approximately E(-gamma)--are studied. An interrelation between the exponent gamma and the variance kappa1(identical with - ) is obtained for the shuffled (randomized) data. For real earthquake data, the most probable value of kappa1 of the shuffled data is found to be approximately equal to that of the original data, the difference most likely arising from temporal correlation. Finally, it is found that the differential entropy associated with the probability P(kappa1) maximizes for gamma around gamma approximately 1.6-1.7 , which is comparable to the value determined experimentally in diverse phenomena: e.g., solar flares, icequakes, dislocation glide in stressed single crystals of ice, etc. It also agrees with the b value in the Gutenberg-Richter law of earthquakes. In addition, the case of multiplicative cascades is studied in the natural time domain.

摘要

自相似性可能源于两个原因

即过程记忆和过程增量的“无限”方差。通过使用自然时间χ来进行区分。关于第一个原因,我们分析了近期地震电信号的数据,这些数据支持它们表现出无限范围时间相关性的观点。关于第二个原因,研究了缓慢驱动的系统,这些系统会发出服从幂律分布(即P(E)≈E^(-γ))的各种能量E的爆发。对于混洗(随机化)数据,得到了指数γ与方差κ1(等同于<χ2> - <χ2>)之间的相互关系。对于实际地震数据,发现混洗数据的κ1最可能值与原始数据的近似相等,差异很可能源于时间相关性。最后,发现与概率P(κ1)相关的微分熵在γ约为1.6 - 1.7时达到最大值,这与在各种现象(如太阳耀斑、冰震、受压单晶冰中的位错滑移等)中通过实验确定的值相当。它也与地震的古登堡 - 里希特定律中的b值一致。此外,在自然时间域中研究了乘法级联的情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验