Suppr超能文献

使用边界元法研究球形细胞在毛细血管中的运动。

Movement of a spherical cell in capillaries using a boundary element method.

作者信息

Wen P H, Aliabadi M H, Wang W

机构信息

Department of Engineering, Queen, Mary, University of London, London E1 4NS, UK.

出版信息

J Biomech. 2007;40(8):1786-93. doi: 10.1016/j.jbiomech.2006.07.006. Epub 2006 Oct 9.

Abstract

This study aims to investigate the translation and rotation of a spherical particle in capillaries and overcomes limitations in previous studies by using a boundary element method. The capillary, a straight cylindrical tube, is filled with a Newtonian viscous fluid. A spherical particle is arbitrarily positioned in the capillary either co-centrically or eccentrically and is free to translate and rotate. Flow in the capillary is first assumed to be caused solely by the movement of the sphere under the gravity. When a steady state is reached, the net force and torque on the sphere are zero. The translating velocity and rotation of the particle are calculated from equilibrium equations. For a co-centric sphere, our result agrees to Bohlin's analytical solution (Bohlin, 1960) and the difference is less than 1%. For an eccentrically positioned sphere in the tube, there are no analytical solutions unless the eccentricity is infinitesimal. Results by boundary element method (BEM) give an improved estimations on the velocity and rotation of the sphere than earlier results by a boundary singularity method (BSM), particularly when the clearance between the tube and the sphere becomes small. Movement of a spherical particle in a capillary driven by a pressure gradient is further investigated, which has closer relevance to movement of blood cells in capillaries. The current study using BEM enables investigation on cell movement in close proximities of the capillary wall.

摘要

本研究旨在探究球形颗粒在毛细血管中的平移和旋转,并通过使用边界元法克服以往研究中的局限性。毛细血管是一根直的圆柱形管子,里面充满了牛顿粘性流体。一个球形颗粒被任意地放置在毛细血管中,要么同心放置,要么偏心放置,并且可以自由平移和旋转。首先假设毛细血管中的流动仅仅是由球体在重力作用下的运动引起的。当达到稳态时,球体上的合力和扭矩为零。根据平衡方程计算颗粒的平移速度和旋转。对于同心球体,我们的结果与博林的解析解(博林,1960年)一致,差异小于1%。对于管中偏心放置的球体,除非偏心率无穷小,否则没有解析解。与早期使用边界奇点法(BSM)得到的结果相比,边界元法(BEM)得到的结果对球体的速度和旋转给出了更好的估计,特别是当管与球体之间的间隙变小时。进一步研究了由压力梯度驱动的球形颗粒在毛细血管中的运动,这与血细胞在毛细血管中的运动更相关。目前使用边界元法的研究能够探究靠近毛细血管壁处的细胞运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验