Suppr超能文献

灵长类动物中异质性基因组分子钟

Heterogeneous genomic molecular clocks in primates.

作者信息

Kim Seong-Ho, Elango Navin, Warden Charles, Vigoda Eric, Yi Soojin V

机构信息

School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

出版信息

PLoS Genet. 2006 Oct 6;2(10):e163. doi: 10.1371/journal.pgen.0020163. Epub 2006 Aug 11.

Abstract

Using data from primates, we show that molecular clocks in sites that have been part of a CpG dinucleotide in recent past (CpG sites) and non-CpG sites are of markedly different nature, reflecting differences in their molecular origins. Notably, single nucleotide substitutions at non-CpG sites show clear generation-time dependency, indicating that most of these substitutions occur by errors during DNA replication. On the other hand, substitutions at CpG sites occur relatively constantly over time, as expected from their primary origin due to methylation. Therefore, molecular clocks are heterogeneous even within a genome. Furthermore, we propose that varying frequencies of CpG dinucleotides in different genomic regions may have contributed significantly to conflicting earlier results on rate constancy of mammalian molecular clock. Our conclusion that different regions of genomes follow different molecular clocks should be considered when inferring divergence times using molecular data and in phylogenetic analysis.

摘要

利用灵长类动物的数据,我们发现,近期曾是CpG二核苷酸一部分的位点(CpG位点)和非CpG位点的分子钟性质明显不同,这反映了它们分子起源的差异。值得注意的是,非CpG位点的单核苷酸替换表现出明显的世代时间依赖性,这表明这些替换大多发生在DNA复制过程中的错误。另一方面,CpG位点的替换随时间相对稳定地发生,正如其因甲基化产生的主要起源所预期的那样。因此,即使在一个基因组内,分子钟也是异质的。此外,我们提出,不同基因组区域中CpG二核苷酸频率的变化可能极大地导致了早期关于哺乳动物分子钟速率恒定性的结果相互矛盾。在使用分子数据推断分歧时间和进行系统发育分析时,应考虑我们的结论,即基因组的不同区域遵循不同的分子钟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e161/1630439/4677b67a32a2/pgen.0020163.g001.jpg

相似文献

1
Heterogeneous genomic molecular clocks in primates.
PLoS Genet. 2006 Oct 6;2(10):e163. doi: 10.1371/journal.pgen.0020163. Epub 2006 Aug 11.
2
Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation.
PLoS Comput Biol. 2008 Feb 29;4(2):e1000015. doi: 10.1371/journal.pcbi.1000015.
3
Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes.
Genome Res. 2010 Apr;20(4):447-57. doi: 10.1101/gr.098947.109. Epub 2010 Jan 26.
4
Evolutionary rate variation in Old World monkeys.
Biol Lett. 2009 Jun 23;5(3):405-8. doi: 10.1098/rsbl.2008.0712. Epub 2009 Mar 4.
5
Grouping substitution types into different relaxed molecular clocks.
Philos Trans R Soc Lond B Biol Sci. 2016 Jul 19;371(1699). doi: 10.1098/rstb.2015.0141.
6
Evolution of genomic sequence inhomogeneity at mid-range scales.
BMC Genomics. 2009 Nov 5;10:513. doi: 10.1186/1471-2164-10-513.
7
Homology-dependent methylation in primate repetitive DNA.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5471-6. doi: 10.1073/pnas.0408986102. Epub 2005 Mar 29.
8
The evolution of CpG density and lifespan in conserved primate and mammalian promoters.
Aging (Albany NY). 2018 Apr 14;10(4):561-572. doi: 10.18632/aging.101413.
9
Variation in the molecular clock of primates.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10607-12. doi: 10.1073/pnas.1600374113. Epub 2016 Sep 6.
10
Mutation dynamics of CpG dinucleotides during a recent event of vertebrate diversification.
Epigenetics. 2019 Jul;14(7):685-707. doi: 10.1080/15592294.2019.1609868. Epub 2019 May 9.

引用本文的文献

1
Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations.
J Mol Evol. 2025 Feb;93(1):62-82. doi: 10.1007/s00239-024-10225-5. Epub 2024 Dec 23.
2
Modeling Substitution Rate Evolution across Lineages and Relaxing the Molecular Clock.
Genome Biol Evol. 2024 Sep 3;16(9). doi: 10.1093/gbe/evae199.
3
Accurate inference of population history in the presence of background selection.
bioRxiv. 2024 Jan 20:2024.01.18.576291. doi: 10.1101/2024.01.18.576291.
5
The Mutagenic Consequences of DNA Methylation within and across Generations.
Epigenomes. 2022 Oct 4;6(4):33. doi: 10.3390/epigenomes6040033.
6
The origin of human mutation in light of genomic data.
Nat Rev Genet. 2021 Oct;22(10):672-686. doi: 10.1038/s41576-021-00376-2. Epub 2021 Jun 23.
7
On the origin and evolution of SARS-CoV-2.
Exp Mol Med. 2021 Apr;53(4):537-547. doi: 10.1038/s12276-021-00604-z. Epub 2021 Apr 16.
8
Evolution of DNA methylation in the human brain.
Nat Commun. 2021 Apr 1;12(1):2021. doi: 10.1038/s41467-021-21917-7.
10
Human Prehistoric Demography Revealed by the Polymorphic Pattern of CpG Transitions.
Mol Biol Evol. 2020 Sep 1;37(9):2691-2698. doi: 10.1093/molbev/msaa112.

本文引用的文献

2
Evidence for an instructive mechanism of de novo methylation in cancer cells.
Nat Genet. 2006 Feb;38(2):149-53. doi: 10.1038/ng1719.
3
Variable molecular clocks in hominoids.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1370-5. doi: 10.1073/pnas.0510716103. Epub 2006 Jan 23.
4
Should the draft chimpanzee sequence be finished?
Trends Genet. 2006 Mar;22(3):122-5. doi: 10.1016/j.tig.2005.12.007. Epub 2006 Jan 10.
5
Ensembl 2006.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D556-61. doi: 10.1093/nar/gkj133.
6
GenBank.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D16-20. doi: 10.1093/nar/gkj157.
7
8
Molecular clocks: four decades of evolution.
Nat Rev Genet. 2005 Aug;6(8):654-62. doi: 10.1038/nrg1659.
9
Initial sequence of the chimpanzee genome and comparison with the human genome.
Nature. 2005 Sep 1;437(7055):69-87. doi: 10.1038/nature04072.
10
New material of the earliest hominid from the Upper Miocene of Chad.
Nature. 2005 Apr 7;434(7034):752-5. doi: 10.1038/nature03392.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验