Suppr超能文献

复制时间对哺乳动物基因组中非 CpG 和 CpG 替换率的影响。

Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes.

机构信息

Centre de Génétique Moléculaire, Allée de la Terrasse, 91198 Gif-sur-Yvette, France.

出版信息

Genome Res. 2010 Apr;20(4):447-57. doi: 10.1101/gr.098947.109. Epub 2010 Jan 26.

Abstract

Neutral nucleotide substitutions occur at varying rates along genomes, and it remains a major issue to unravel the mechanisms that cause these variations and to analyze their evolutionary consequences. Here, we study the role of replication in the neutral substitution pattern. We obtained a high-resolution replication timing profile of the whole human genome by massively parallel sequencing of nascent BrdU-labeled replicating DNA. These data were compared to the neutral substitution rates along the human genome, obtained by aligning human and chimpanzee genomes using macaque and orangutan as outgroups. All substitution rates increase monotonously with replication timing even after controlling for local or regional nucleotide composition, crossover rate, distance to telomeres, and chromatin compaction. The increase in non-CpG substitution rates might result from several mechanisms including the increase in mutation-prone activities or the decrease in efficiency of DNA repair during the S phase. In contrast, the rate of C --> T transitions in CpG dinucleotides increases in later-replicating regions due to increasing DNA methylation level that reflects a negative correlation between timing and gene expression. Similar results are observed in the mouse, which indicates that replication timing is a main factor affecting nucleotide substitution dynamics at non-CpG sites and constitutes a major neutral process driving mammalian genome evolution.

摘要

中性核苷酸替换在基因组中以不同的速率发生,揭示导致这些变化的机制并分析其进化后果仍然是一个主要问题。在这里,我们研究了复制在中性替换模式中的作用。我们通过大规模平行测序新合成的 BrdU 标记的复制 DNA 获得了整个人类基因组的高分辨率复制时间图谱。这些数据与通过对齐人类和黑猩猩基因组并使用猕猴和猩猩作为外群获得的人类基因组中性替换率进行了比较。即使在控制了局部或区域核苷酸组成、交叉率、端粒距离和染色质紧缩后,所有替换率仍随复制时间单调增加。非 CpG 替换率的增加可能是由于多种机制导致的,包括在 S 期突变易感性活动的增加或 DNA 修复效率的降低。相比之下,CpG 二核苷酸中 C 到 T 的转换率在复制较晚的区域增加,这是由于 DNA 甲基化水平的增加所致,这反映了时间和基因表达之间的负相关。在老鼠中也观察到了类似的结果,这表明复制时间是影响非 CpG 位点核苷酸替换动态的主要因素,并且是驱动哺乳动物基因组进化的主要中性过程。

相似文献

1
Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes.
Genome Res. 2010 Apr;20(4):447-57. doi: 10.1101/gr.098947.109. Epub 2010 Jan 26.
3
Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation.
PLoS Comput Biol. 2008 Feb 29;4(2):e1000015. doi: 10.1371/journal.pcbi.1000015.
4
The impact of recombination on nucleotide substitutions in the human genome.
PLoS Genet. 2008 May 9;4(5):e1000071. doi: 10.1371/journal.pgen.1000071.
5
6
Evaluation of the effect of CpG hypermutability on human codon substitution.
Gene. 2009 Feb 15;431(1-2):18-22. doi: 10.1016/j.gene.2008.11.006. Epub 2008 Nov 19.
7
Increased substitution rates surrounding low-complexity regions within primate proteins.
Genome Biol Evol. 2014 Mar;6(3):655-65. doi: 10.1093/gbe/evu042.
10
Preservation of methylated CpG dinucleotides in human CpG islands.
Biol Direct. 2016 Mar 22;11(1):11. doi: 10.1186/s13062-016-0113-x.

引用本文的文献

1
Insights into the evolution and regulation of miRNAs from the view of their DNA replication temporal domains.
Front Genet. 2025 Jun 23;16:1544802. doi: 10.3389/fgene.2025.1544802. eCollection 2025.
2
A comparison of genomic methods to assess DNA replication timing.
Sci Rep. 2025 May 22;15(1):17761. doi: 10.1038/s41598-025-02699-0.
3
Structural features of somatic and germline retrotransposition events in humans.
Mob DNA. 2025 Apr 22;16(1):20. doi: 10.1186/s13100-025-00357-w.
4
R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania.
Nat Commun. 2025 Feb 8;16(1):1470. doi: 10.1038/s41467-025-56785-y.
5
The double life of mammalian DNA replication origins.
Genes Dev. 2025 Mar 3;39(5-6):304-324. doi: 10.1101/gad.352227.124.
7
DNA Damage, Genome Stability, and Adaptation: A Question of Chance or Necessity?
Genes (Basel). 2024 Apr 21;15(4):520. doi: 10.3390/genes15040520.
8
Emergence of enhancers at late DNA replicating regions.
Nat Commun. 2024 Apr 24;15(1):3451. doi: 10.1038/s41467-024-47391-5.
9
Differences in CpG island distribution between exogenous and endogenous jaagsiekte sheep retrovirus strains.
Vet Res Forum. 2023;14(10):531-539. doi: 10.30466/vrf.2022.552748.3454. Epub 2023 Oct 15.
10
Topography of mutational signatures in human cancer.
Cell Rep. 2023 Aug 29;42(8):112930. doi: 10.1016/j.celrep.2023.112930. Epub 2023 Aug 4.

本文引用的文献

1
Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis.
Genome Res. 2010 Feb;20(2):155-69. doi: 10.1101/gr.099796.109. Epub 2009 Dec 1.
2
Human mutation rate associated with DNA replication timing.
Nat Genet. 2009 Apr;41(4):393-5. doi: 10.1038/ng.363. Epub 2009 Mar 15.
4
Hotspots of biased nucleotide substitutions in human genes.
PLoS Biol. 2009 Jan 27;7(1):e26. doi: 10.1371/journal.pbio.1000026.
5
DNA mismatch repair efficiency and fidelity are elevated during DNA synthesis in human cells.
Mutat Res. 2009 Mar 9;662(1-2):59-66. doi: 10.1016/j.mrfmmm.2008.12.006. Epub 2008 Dec 24.
6
The diploid genome sequence of an Asian individual.
Nature. 2008 Nov 6;456(7218):60-5. doi: 10.1038/nature07484.
7
Accurate whole human genome sequencing using reversible terminator chemistry.
Nature. 2008 Nov 6;456(7218):53-9. doi: 10.1038/nature07517.
8
Genome-wide nucleotide-level mammalian ancestor reconstruction.
Genome Res. 2008 Nov;18(11):1829-43. doi: 10.1101/gr.076521.108. Epub 2008 Oct 10.
9
Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs.
Genome Res. 2008 Nov;18(11):1814-28. doi: 10.1101/gr.076554.108. Epub 2008 Oct 10.
10
Global reorganization of replication domains during embryonic stem cell differentiation.
PLoS Biol. 2008 Oct 7;6(10):e245. doi: 10.1371/journal.pbio.0060245.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验