Suppr超能文献

大肠杆菌中生长停滞和多药耐受性需要过表达的HipA的激酶活性。

Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli.

作者信息

Correia Frederick F, D'Onofrio Anthony, Rejtar Tomas, Li Lingyun, Karger Barry L, Makarova Kira, Koonin Eugene V, Lewis Kim

机构信息

Department of Biology, Northeastern University, 405 Mugar Hall, 360 Huntington Avenue, Boston, MA 02115, USA.

出版信息

J Bacteriol. 2006 Dec;188(24):8360-7. doi: 10.1128/JB.01237-06. Epub 2006 Oct 13.

Abstract

Overexpression of the HipA protein of the HipBA toxin/antitoxin module leads to multidrug tolerance in Escherichia coli. HipA is a "toxin" that causes reversible dormancy, whereas HipB is an antitoxin that binds HipA and acts as a transcriptional repressor of the hipBA operon. Comparative sequence analysis shows that HipA is a member of the phosphatidylinositol 3/4-kinase superfamily. The kinase activity of HipA was examined. HipA was autophosphorylated in the presence of ATP in vitro, and the purified protein appeared to carry a single phosphate group on serine 150. Thus, HipA is a serine kinase that is at least partially phosphorylated in vivo. Overexpression of HipA caused inhibition of cell growth and increase in persister formation. Replacing conserved aspartate 309 in the conserved kinase active site or aspartate 332 in the Mg2+-binding site with glutamine produced mutant proteins that lost the ability to stop cellular growth upon overexpression. Replacing serine 150 with alanine yielded a similarly inactive protein. The mutant proteins were then examined for their ability to increase antibiotic tolerance. Cells overexpressing wild-type HipA were highly tolerant to cefotaxime, a cell wall synthesis inhibitor, to ofloxacin, a fluoroquinolone inhibitor of DNA gyrase, and to topoisomerase IV and were almost completely resistant to killing by mitomycin C, which forms DNA adducts. The mutant proteins did not protect cells from cefotaxime or ofloxacin and had an impaired ability to protect from mitomycin C. Taken together, these results suggest that the protein kinase activity of HipA is essential for persister formation.

摘要

HipBA毒素/抗毒素模块的HipA蛋白过表达会导致大肠杆菌产生多药耐受性。HipA是一种导致可逆性休眠的“毒素”,而HipB是一种抗毒素,它与HipA结合并作为hipBA操纵子的转录阻遏物发挥作用。比较序列分析表明,HipA是磷脂酰肌醇3/4激酶超家族的成员。对HipA的激酶活性进行了检测。HipA在体外ATP存在的情况下发生自磷酸化,纯化后的蛋白似乎在丝氨酸150上携带一个磷酸基团。因此,HipA是一种丝氨酸激酶,在体内至少部分被磷酸化。HipA的过表达导致细胞生长受到抑制,并且持久性细胞形成增加。将保守激酶活性位点中的保守天冬氨酸309或Mg2+结合位点中的天冬氨酸332替换为谷氨酰胺,产生的突变蛋白在过表达时失去了阻止细胞生长的能力。将丝氨酸150替换为丙氨酸产生了同样无活性的蛋白。然后检测这些突变蛋白增加抗生素耐受性的能力。过表达野生型HipA的细胞对头孢噻肟(一种细胞壁合成抑制剂)、氧氟沙星(一种DNA回旋酶的氟喹诺酮类抑制剂)、拓扑异构酶IV具有高度耐受性,并且几乎完全抵抗丝裂霉素C的杀伤作用,丝裂霉素C会形成DNA加合物。突变蛋白不能保护细胞免受头孢噻肟或氧氟沙星的影响,并且保护细胞免受丝裂霉素C影响的能力受损。综上所述,这些结果表明HipA的蛋白激酶活性对于持久性细胞的形成至关重要。

相似文献

1
Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli.
J Bacteriol. 2006 Dec;188(24):8360-7. doi: 10.1128/JB.01237-06. Epub 2006 Oct 13.
2
Serine-Threonine Kinases Encoded by Split Homologs Inhibit Tryptophanyl-tRNA Synthetase.
mBio. 2019 Jun 18;10(3):e01138-19. doi: 10.1128/mBio.01138-19.
3
HipBA-promoter structures reveal the basis of heritable multidrug tolerance.
Nature. 2015 Aug 6;524(7563):59-64. doi: 10.1038/nature14662. Epub 2015 Jul 29.
5
Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.
J Bacteriol. 2004 Dec;186(24):8172-80. doi: 10.1128/JB.186.24.8172-8180.2004.
6
Phylogeny Reveals Novel HipA-Homologous Kinase Families and Toxin-Antitoxin Gene Organizations.
mBio. 2021 Jun 29;12(3):e0105821. doi: 10.1128/mBio.01058-21. Epub 2021 Jun 1.
7
Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB.
Science. 2009 Jan 16;323(5912):396-401. doi: 10.1126/science.1163806.
8
Molecular mechanism of bacterial persistence by HipA.
Mol Cell. 2013 Oct 24;52(2):248-54. doi: 10.1016/j.molcel.2013.08.045. Epub 2013 Oct 3.
9
The kinases HipA and HipA7 phosphorylate different substrate pools in to promote multidrug tolerance.
Sci Signal. 2018 Sep 11;11(547):eaat5750. doi: 10.1126/scisignal.aat5750.
10
hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus.
Sci Rep. 2020 Feb 18;10(1):2865. doi: 10.1038/s41598-020-59283-x.

引用本文的文献

1
Type II Toxin-Antitoxin Systems in .
Infect Drug Resist. 2025 Feb 24;18:1083-1096. doi: 10.2147/IDR.S501485. eCollection 2025.
2
3
Deep phosphoproteomics of Klebsiella pneumoniae reveals HipA-mediated tolerance to ciprofloxacin.
PLoS Pathog. 2024 Dec 12;20(12):e1012759. doi: 10.1371/journal.ppat.1012759. eCollection 2024 Dec.
4
Persistence and Culturability of under Induced Toxin Expression.
Antibiotics (Basel). 2024 Sep 9;13(9):863. doi: 10.3390/antibiotics13090863.
6
Bacterial persisters: molecular mechanisms and therapeutic development.
Signal Transduct Target Ther. 2024 Jul 17;9(1):174. doi: 10.1038/s41392-024-01866-5.
7
Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings.
Curr Res Microb Sci. 2023 Oct 6;5:100204. doi: 10.1016/j.crmicr.2023.100204. eCollection 2023.
8
Bacterial persistence in clinical isolates from patients with recurring legionellosis.
Front Cell Infect Microbiol. 2023 Aug 1;13:1219233. doi: 10.3389/fcimb.2023.1219233. eCollection 2023.
9
E. coli Toxin YjjJ (HipH) Is a Ser/Thr Protein Kinase That Impacts Cell Division, Carbon Metabolism, and Ribosome Assembly.
mSystems. 2023 Feb 23;8(1):e0104322. doi: 10.1128/msystems.01043-22. Epub 2022 Dec 20.
10
Pan-kinome of Legionella expanded by a bioinformatics survey.
Sci Rep. 2022 Dec 16;12(1):21782. doi: 10.1038/s41598-022-26109-x.

本文引用的文献

1
GlpD and PlsB participate in persister cell formation in Escherichia coli.
J Bacteriol. 2006 Jul;188(14):5136-44. doi: 10.1128/JB.00369-06.
2
Persisters: a distinct physiological state of E. coli.
BMC Microbiol. 2006 Jun 12;6:53. doi: 10.1186/1471-2180-6-53.
4
Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins.
J Bacteriol. 2006 May;188(10):3494-7. doi: 10.1128/JB.188.10.3494-3497.2006.
5
Persister cells mediate tolerance to metal oxyanions in Escherichia coli.
Microbiology (Reading). 2005 Oct;151(Pt 10):3181-3195. doi: 10.1099/mic.0.27794-0.
6
Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.
Environ Microbiol. 2005 Jul;7(7):981-94. doi: 10.1111/j.1462-2920.2005.00777.x.
7
Prokaryotic toxin-antitoxin stress response loci.
Nat Rev Microbiol. 2005 May;3(5):371-82. doi: 10.1038/nrmicro1147.
8
Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations.
Antimicrob Agents Chemother. 2005 Apr;49(4):1483-94. doi: 10.1128/AAC.49.4.1483-1494.2005.
9
Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS.
Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):3948-53. doi: 10.1073/pnas.0409536102. Epub 2005 Mar 1.
10
Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes.
Nucleic Acids Res. 2005 Feb 17;33(3):966-76. doi: 10.1093/nar/gki201. Print 2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验