Suppr超能文献

HipA介导的多药耐受性分子机制及其被HipB中和的过程

Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB.

作者信息

Schumacher Maria A, Piro Kevin M, Xu Weijun, Hansen Sonja, Lewis Kim, Brennan Richard G

机构信息

Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Unit 1000, Houston, TX 77030, USA.

出版信息

Science. 2009 Jan 16;323(5912):396-401. doi: 10.1126/science.1163806.

Abstract

Bacterial multidrug tolerance is largely responsible for the inability of antibiotics to eradicate infections and is caused by a small population of dormant bacteria called persisters. HipA is a critical Escherichia coli persistence factor that is normally neutralized by HipB, a transcription repressor, which also regulates hipBA expression. Here, we report multiple structures of HipA and a HipA-HipB-DNA complex. HipA has a eukaryotic serine/threonine kinase-like fold and can phosphorylate the translation factor EF-Tu, suggesting a persistence mechanism via cell stasis. The HipA-HipB-DNA structure reveals the HipB-operator binding mechanism, approximately 70 degrees DNA bending, and unexpected HipA-DNA contacts. Dimeric HipB interacts with two HipA molecules to inhibit its kinase activity through sequestration and conformational inactivation. Combined, these studies suggest mechanisms for HipA-mediated persistence and its neutralization by HipB.

摘要

细菌的多重耐药性在很大程度上导致了抗生素无法根除感染,这是由一小部分称为持留菌的休眠细菌引起的。HipA是大肠杆菌中一种关键的持留因子,通常被转录抑制因子HipB中和,HipB也调节hipBA的表达。在此,我们报告了HipA以及HipA-HipB-DNA复合物的多个结构。HipA具有真核丝氨酸/苏氨酸激酶样折叠结构,能够磷酸化翻译因子EF-Tu,提示了一种通过细胞停滞的持留机制。HipA-HipB-DNA结构揭示了HipB与操纵子的结合机制、约70度的DNA弯曲以及意外的HipA-DNA相互作用。二聚体HipB与两个HipA分子相互作用,通过隔离和构象失活来抑制其激酶活性。综合这些研究,揭示了HipA介导的持留及其被HipB中和的机制。

相似文献

1
Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB.
Science. 2009 Jan 16;323(5912):396-401. doi: 10.1126/science.1163806.
2
HipBA-promoter structures reveal the basis of heritable multidrug tolerance.
Nature. 2015 Aug 6;524(7563):59-64. doi: 10.1038/nature14662. Epub 2015 Jul 29.
3
ATP and autophosphorylation driven conformational changes of HipA kinase revealed by ion mobility and crosslinking mass spectrometry.
Anal Bioanal Chem. 2016 Aug;408(21):5925-5933. doi: 10.1007/s00216-016-9709-3. Epub 2016 Jun 20.
4
Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis.
J Bacteriol. 1994 Jul;176(13):4081-91. doi: 10.1128/jb.176.13.4081-4091.1994.
7
Molecular mechanism of bacterial persistence by HipA.
Mol Cell. 2013 Oct 24;52(2):248-54. doi: 10.1016/j.molcel.2013.08.045. Epub 2013 Oct 3.
8
New kinase regulation mechanism found in HipBA: a bacterial persistence switch.
Acta Crystallogr D Biol Crystallogr. 2009 Aug;65(Pt 8):875-9. doi: 10.1107/S0907444909018800. Epub 2009 Jul 17.
9
The kinases HipA and HipA7 phosphorylate different substrate pools in to promote multidrug tolerance.
Sci Signal. 2018 Sep 11;11(547):eaat5750. doi: 10.1126/scisignal.aat5750.
10
Serine-Threonine Kinases Encoded by Split Homologs Inhibit Tryptophanyl-tRNA Synthetase.
mBio. 2019 Jun 18;10(3):e01138-19. doi: 10.1128/mBio.01138-19.

引用本文的文献

1
Antifungal persistence: Clinical relevance and mechanisms.
PLoS Pathog. 2025 Sep 11;21(9):e1013456. doi: 10.1371/journal.ppat.1013456. eCollection 2025 Sep.
4
Regulation of bacterial phosphorelay systems.
RSC Chem Biol. 2025 Jun 19. doi: 10.1039/d5cb00016e.
5
Novel type II toxin-antitoxin systems with VapD-like proteins.
mBio. 2025 Apr 9;16(4):e0000325. doi: 10.1128/mbio.00003-25. Epub 2025 Mar 7.
7
Deep phosphoproteomics of Klebsiella pneumoniae reveals HipA-mediated tolerance to ciprofloxacin.
PLoS Pathog. 2024 Dec 12;20(12):e1012759. doi: 10.1371/journal.ppat.1012759. eCollection 2024 Dec.
8
GPS-pPLM: A Language Model for Prediction of Prokaryotic Phosphorylation Sites.
Cells. 2024 Nov 8;13(22):1854. doi: 10.3390/cells13221854.
9
Reactive Oxygen Detoxification Contributes to Antibiotic Survival.
bioRxiv. 2024 Oct 29:2024.10.13.618103. doi: 10.1101/2024.10.13.618103.

本文引用的文献

1
DNA structural deformations in the interaction of the controller protein C.AhdI with its operator sequence.
Nucleic Acids Res. 2007;35(8):2643-50. doi: 10.1093/nar/gkm129. Epub 2007 Apr 10.
2
Persister cells, dormancy and infectious disease.
Nat Rev Microbiol. 2007 Jan;5(1):48-56. doi: 10.1038/nrmicro1557. Epub 2006 Dec 4.
3
Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli.
J Bacteriol. 2006 Dec;188(24):8360-7. doi: 10.1128/JB.01237-06. Epub 2006 Oct 13.
4
Persisters: a distinct physiological state of E. coli.
BMC Microbiol. 2006 Jun 12;6:53. doi: 10.1186/1471-2180-6-53.
6
Toxin-antitoxin modules as bacterial metabolic stress managers.
Trends Biochem Sci. 2005 Dec;30(12):672-9. doi: 10.1016/j.tibs.2005.10.004. Epub 2005 Oct 28.
8
Persister cells and the riddle of biofilm survival.
Biochemistry (Mosc). 2005 Feb;70(2):267-74. doi: 10.1007/s10541-005-0111-6.
9
The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles.
EMBO J. 2005 Feb 9;24(3):452-63. doi: 10.1038/sj.emboj.7600554. Epub 2005 Jan 20.
10
Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.
J Bacteriol. 2004 Dec;186(24):8172-80. doi: 10.1128/JB.186.24.8172-8180.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验