Suppr超能文献

一种水稻Tc1/类水手元件在酵母中发生转座。

A rice Tc1/mariner-like element transposes in yeast.

作者信息

Yang Guojun, Weil Clifford F, Wessler Susan R

机构信息

Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.

出版信息

Plant Cell. 2006 Oct;18(10):2469-78. doi: 10.1105/tpc.106.045906. Epub 2006 Oct 13.

Abstract

The Tc1/mariner transposable element superfamily is widely distributed in animal and plant genomes. However, no active plant element has been previously identified. Nearly identical copies of a rice (Oryza sativa) Tc1/mariner element called Osmar5 in the genome suggested potential activity. Previous studies revealed that Osmar5 encoded a protein that bound specifically to its own ends. In this report, we show that Osmar5 is an active transposable element by demonstrating that expression of its coding sequence in yeast promotes the excision of a nonautonomous Osmar5 element located in a reporter construct. Element excision produces transposon footprints, whereas element reinsertion occurs at TA dinucleotides that were either tightly linked or unlinked to the excision site. Several site-directed mutations in the transposase abolished activity, whereas mutations in the transposase binding site prevented transposition of the nonautonomous element from the reporter construct. This report of an active plant Tc1/mariner in yeast will provide a foundation for future comparative analyses of animal and plant elements in addition to making a new wide host range transposable element available for plant gene tagging.

摘要

Tc1/水手转座因子超家族广泛分布于动植物基因组中。然而,此前尚未鉴定出有活性的植物元件。基因组中一个名为Osmar5的水稻(Oryza sativa)Tc1/水手元件的近乎相同的拷贝暗示了其潜在活性。先前的研究表明,Osmar5编码一种能特异性结合其自身末端的蛋白质。在本报告中,我们通过证明其编码序列在酵母中的表达促进了位于报告构建体中的非自主Osmar5元件的切除,表明Osmar5是一种活性转座因子。元件切除会产生转座子足迹,而元件重新插入则发生在与切除位点紧密相连或不相连的TA二核苷酸处。转座酶中的几个定点突变消除了活性,而转座酶结合位点的突变则阻止了非自主元件从报告构建体中转座。本报告中关于酵母中一种活性植物Tc1/水手元件的研究,将为未来动植物元件的比较分析奠定基础,此外还将提供一种新的广泛宿主范围的转座因子用于植物基因标签。

相似文献

1
A rice Tc1/mariner-like element transposes in yeast.
Plant Cell. 2006 Oct;18(10):2469-78. doi: 10.1105/tpc.106.045906. Epub 2006 Oct 13.
2
Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10962-7. doi: 10.1073/pnas.0702080104. Epub 2007 Jun 19.
3
Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions.
Fungal Genet Biol. 2009 Jun-Jul;46(6-7):441-9. doi: 10.1016/j.fgb.2009.02.007. Epub 2009 Mar 6.
4
Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE.
Science. 2009 Sep 11;325(5946):1391-4. doi: 10.1126/science.1175688.
5
Identification of active transposon dTok, a member of the hAT family, in rice.
Plant Cell Physiol. 2006 Nov;47(11):1473-83. doi: 10.1093/pcp/pcl012. Epub 2006 Sep 20.
6
Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.
Genomics. 2009 Mar;93(3):274-81. doi: 10.1016/j.ygeno.2008.11.007. Epub 2008 Dec 23.
7
An active DNA transposon family in rice.
Nature. 2003 Jan 9;421(6919):163-7. doi: 10.1038/nature01214.
8
A transcriptionally active maize MuDR-like transposable element in rice and its relatives.
Mol Genet Genomics. 2002 Nov;268(3):321-30. doi: 10.1007/s00438-002-0737-7. Epub 2002 Aug 15.
9
The plant MITE mPing is mobilized in anther culture.
Nature. 2003 Jan 9;421(6919):167-70. doi: 10.1038/nature01218.
10

引用本文的文献

1
Artificial optimization of bamboo transposase and host factors effects on transposition in yeast.
Front Plant Sci. 2022 Oct 20;13:1004732. doi: 10.3389/fpls.2022.1004732. eCollection 2022.
5
Tracking the genome-wide outcomes of a transposable element burst over decades of amplification.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):E10550-E10559. doi: 10.1073/pnas.1716459114. Epub 2017 Nov 20.
6
Functional characterization of the active like transposable element, from the mosquito .
Mob DNA. 2017 Jan 11;8:1. doi: 10.1186/s13100-016-0084-6. eCollection 2017.
8
The making of a genomic parasite - the Mothra family sheds light on the evolution of Helitrons in plants.
Mob DNA. 2015 Dec 17;6:23. doi: 10.1186/s13100-015-0054-4. eCollection 2015.
9
Precise repair of mPing excision sites is facilitated by target site duplication derived microhomology.
Mob DNA. 2015 Sep 7;6:15. doi: 10.1186/s13100-015-0046-4. eCollection 2015.
10
Genome-wide comparison of Asian and African rice reveals high recent activity of DNA transposons.
Mob DNA. 2015 Apr 28;6:8. doi: 10.1186/s13100-015-0040-x. eCollection 2015.

本文引用的文献

1
Mechanism of Mos1 transposition: insights from structural analysis.
EMBO J. 2006 Mar 22;25(6):1324-34. doi: 10.1038/sj.emboj.7601018. Epub 2006 Mar 2.
2
Cancer gene discovery using the Sleeping Beauty transposon.
Cell Cycle. 2005 Dec;4(12):1744-8. doi: 10.4161/cc.4.12.2223. Epub 2005 Dec 5.
3
Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system.
Nature. 2005 Jul 14;436(7048):221-6. doi: 10.1038/nature03691.
4
DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs.
Nucleic Acids Res. 2005 Apr 14;33(7):2153-65. doi: 10.1093/nar/gki509. Print 2005.
7
Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA.
Nucleic Acids Res. 2004 Aug 10;32(14):4306-12. doi: 10.1093/nar/gkh770. Print 2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验