Ball F G, Davies S S, Sansom M S
Department of Mathematics, University of Nottingham, University Park, U.K.
Proc Biol Sci. 1990 Oct 22;242(1303):61-7. doi: 10.1098/rspb.1990.0104.
Patch-clamp recording permits investigation of the gating kinetics of single ion channels. Careful statistical analysis of kinetic data can yield clues as to the molecular events underlying channel gating. However, it is important that such analysis should take full account of the limitations that arise from the finite time resolution of patch-clamp recording techniques. Single-ion-channel data are generally interpreted in terms of Markov process models of channel gating mechanisms. Experimental channel records suffer from time interval omission, i.e. failure to detect brief channel openings and closings. This leads to an identifiability problem when analysing single-channel data, i.e. different gating mechanisms provide equally convincing descriptions of the same experimental data. We consider a two-state Markov model of receptor-channel gating in which the channel opening rate is proportional to the agonist concentration, C in equilibrium with OA. By using computer-simulated data, the approximate likelihood of the data is maximized to yield parameter estimates for the model. At a single agonist concentration there is an identifiability problem in that two pairs of parameter estimates are obtained. The 'true' parameter estimates cannot be distinguished from the 'false' ones. By considering data corresponding to a range of agonist concentrations one may identify the 'true' parameter estimates as those that do not change as the agonist concentration is increased. Alternatively, one may identify the 'true' parameter estimates directly by maximizing a global likelihood, the latter being obtained by simultaneous consideration of data obtained at several different agonist concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)
膜片钳记录技术可用于研究单离子通道的门控动力学。对动力学数据进行仔细的统计分析能够揭示通道门控背后的分子事件线索。然而,重要的是,这种分析应充分考虑膜片钳记录技术有限的时间分辨率所带来的局限性。单离子通道数据通常根据通道门控机制的马尔可夫过程模型来解释。实验性通道记录存在时间间隔遗漏问题,即未能检测到短暂的通道开放和关闭。这在分析单通道数据时会导致一个可识别性问题,即不同的门控机制对相同的实验数据能给出同样令人信服的描述。我们考虑一种受体 - 通道门控的双态马尔可夫模型,其中通道开放速率与激动剂浓度C成正比,且与OA处于平衡状态。通过使用计算机模拟数据,使数据的近似似然度最大化以得到模型的参数估计值。在单一激动剂浓度下存在可识别性问题,因为会得到两对参数估计值。“真实”的参数估计值无法与“错误”的区分开来。通过考虑一系列激动剂浓度对应的数据,可以将“真实”的参数估计值确定为那些随着激动剂浓度增加而不变的估计值。或者,也可以通过最大化全局似然度直接确定“真实”的参数估计值,全局似然度是通过同时考虑在几个不同激动剂浓度下获得的数据得到的。(摘要截短于250字)