Möller-Levet Carla S, West Catharine M, Miller Crispin J
Paterson Institute for Cancer Research, Cancer Research UK, Manchester, M20 4BX, UK.
Bioinformatics. 2007 Oct 15;23(20):2733-40. doi: 10.1093/bioinformatics/btm441. Epub 2007 Sep 7.
Biological and technical variability is intrinsic in any microarray experiment. While most approaches aim to account for this variability, they do not actively exploit it. Here, we consider a novel approach that uses the variability between arrays to provide an extra source of information that can enhance gene expression analyses.
We develop a method that uses sample similarity to incorporate sample variability into the analysis of gene expression profiles. This allows each pairwise correlation calculation to borrow information from all the data in the experiment. Results on synthetic and human cancer microarray datasets show that the inclusion of this information leads to a significant increase in the ability to identify previously characterized relationships and a reduction in false discovery rate, when compared to a standard analysis using Pearson correlation. The information carried by the variability between arrays can be exploited to significantly improve the analysis of gene expression data.
Matlab script files are available from the author.
Supplementary data are available at Bioinformatics online.
在任何微阵列实验中,生物学和技术变异性都是固有的。虽然大多数方法旨在考虑这种变异性,但它们并未积极利用它。在这里,我们考虑一种新颖的方法,该方法利用阵列之间的变异性来提供额外的信息源,从而增强基因表达分析。
我们开发了一种方法,该方法使用样本相似性将样本变异性纳入基因表达谱分析中。这使得每个成对相关性计算都可以从实验中的所有数据中借用信息。与使用皮尔逊相关性的标准分析相比,在合成和人类癌症微阵列数据集上的结果表明,包含此信息会导致识别先前已表征关系的能力显著提高,且错误发现率降低。可以利用阵列之间变异性所携带的信息来显著改善基因表达数据的分析。
作者提供了Matlab脚本文件。
补充数据可在《生物信息学》在线获取。