Montfort Frédéric, Charrière Florian, Colomb Tristan, Cuche Etienne, Marquet Pierre, Depeursinge Christian
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut d'Optique Appliquée, Ch-1015 Lausanne, Switzerland.
J Opt Soc Am A Opt Image Sci Vis. 2006 Nov;23(11):2944-53. doi: 10.1364/josaa.23.002944.
Introducing a microscope objective in an interferometric setup induces a phase curvature on the resulting wavefront. In digital holography, the compensation of this curvature is often done by introducing an identical curvature in the reference arm and the hologram is then processed using a plane wave in the reconstruction. This physical compensation can be avoided, and several numerical methods exist to retrieve phase contrast images in which the microscope curvature is compensated. Usually, a digital array of complex numbers is introduced in the reconstruction process to perform this curvature correction. Different corrections are discussed in terms of their influence on the reconstructed image size and location in space. The results are presented according to two different expressions of the Fresnel transform, the single Fourier transform and convolution approaches, used to propagate the reconstructed wavefront from the hologram plane to the final image plane.
在干涉测量装置中引入显微镜物镜会在所得波前上引起相位曲率。在数字全息术中,这种曲率的补偿通常是通过在参考臂中引入相同的曲率来实现的,然后在重建过程中使用平面波对全息图进行处理。这种物理补偿可以避免,并且存在几种数值方法来检索其中显微镜曲率得到补偿的相位对比图像。通常,在重建过程中引入一个复数数字阵列来执行这种曲率校正。根据它们对重建图像大小和空间位置的影响,讨论了不同的校正方法。结果是根据菲涅耳变换的两种不同表达式呈现的,即单傅里叶变换和卷积方法,用于将重建波前从全息图平面传播到最终图像平面。