Suppr超能文献

一种基于小波的从多频振荡信号中提取局部相位的方法。

A wavelet-based method for local phase extraction from a multi-frequency oscillatory signal.

作者信息

Roux Stéphane G, Cenier Tristan, Garcia Samuel, Litaudon Philippe, Buonviso Nathalie

机构信息

Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR 5672, 46 allée d'Italie, 69364 Lyon Cedex 07, France.

出版信息

J Neurosci Methods. 2007 Feb 15;160(1):135-43. doi: 10.1016/j.jneumeth.2006.09.001. Epub 2006 Oct 17.

Abstract

One of the challenges in analyzing neuronal activity is to correlate discrete signal, such as action potentials with a signal having a continuous waveform such as oscillating local field potentials (LFPs). Studies in several systems have shown that some aspects of information coding involve characteristics that intertwine both signals. An action potential is a fast transitory phenomenon that occurs at high frequencies whereas a LFP is a low frequency phenomenon. The study of correlations between these signals requires a good estimation of both instantaneous phase and instantaneous frequency. To extract the instantaneous phase, common techniques rely on the Hilbert transform performed on a filtered signal, which discards temporal information. Therefore, time-frequency methods are best fitted for non-stationary signals, since they preserve both time and frequency information. We propose a new algorithmic procedure that uses wavelet transform and ridge extraction for signals that contain one or more oscillatory frequencies and whose oscillatory frequencies may shift as a function of time. This procedure provides estimates of phase, frequency and temporal features. It can be automated, produces manageable amounts of data and allows human supervision. Because of such advantages, this method is particularly suitable for analyzing synchronization between LFPs and unitary events.

摘要

分析神经元活动的挑战之一是将离散信号(如动作电位)与具有连续波形的信号(如振荡局部场电位(LFP))相关联。多个系统的研究表明,信息编码的某些方面涉及交织这两种信号的特征。动作电位是一种高频出现的快速瞬态现象,而LFP是一种低频现象。对这些信号之间相关性的研究需要对瞬时相位和瞬时频率进行良好的估计。为了提取瞬时相位,常用技术依赖于对滤波后的信号执行希尔伯特变换,这会丢弃时间信息。因此,时频方法最适合非平稳信号,因为它们同时保留了时间和频率信息。我们提出了一种新的算法程序,该程序使用小波变换和脊线提取来处理包含一个或多个振荡频率且其振荡频率可能随时间变化的信号。此程序可提供相位、频率和时间特征的估计。它可以自动化,产生可管理的数据量并允许人工监督。由于这些优点,该方法特别适合分析LFP与单一事件之间的同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验